6 research outputs found

    Magnetization of a two-dimensional electron gas with a second filled subband

    Get PDF
    We have measured the magnetization of a dual-subband two-dimensional electron gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional electron gases with a single subband, we observe non-1/B-periodic, triangularly shaped oscillations of the magnetization with an amplitude significantly less than 1μB∗1 \mu_{\mathrm{B}}^* per electron. All three effects are explained by a field dependent self-consistent model, demonstrating the shape of the magnetization is dominated by oscillations in the confining potential. Additionally, at 1 K, we observe small oscillations at magnetic fields where Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    Posterior identification and exposure of the V3 segment of the vertebral artery

    No full text
    Objective: The purpose of this study was to define the anatomy of the V3 segment of the vertebral artery (VA) from the posterior approach. Methods: Ten formalin-fixed cadavers were carefully dissected bilaterally using landmark features to identify and safely expose the VA from the posterior. Measurements regarding morphometric characteristics of landmark features and feasible resection quantifications were obtained and analyzed. The C2 pars was resected completely in all cadavers, averaging 15.03 ± 1.06 mm in thickness. Results: The average diameter of the VA at the midline of C2 on the right side was 4.66 ± 0.51 mm compared to the left 5.2 ± 0.49 mm (P = 0.002). The distance of the VA from the midline increased from caudal to rostral. The distance between the VA to the lateral edge of the dura in the middle of the window of approach was 9.67 ± 0.81 mm. The rostral-caudal length of the window of approach was 21.94 ± 1.60 mm. The percentage of C2 body removal was 28.04% ± 6.09% through each side (249.55 ± 55.5/898.2 ± 146.17 mm2). While carefully exposing the VA, a posterior approach can be feasible in cases of injury during C1–C2 instrumentation or during resection of tumors of the C2 pars with or without extension into the C2 body. Discussion: The posterior approach for a C2 partial corpectomy can also be used as an adjunct to anterior approaches when necessary to widen the extent of bone resection. Conclusion: Exposure of the V3 segment of the vertebral artery was defined as well as the extent of C2 corpectomy through the posterior approach
    corecore