97 research outputs found
Informatics for RNA sequencing: A web resource for analysis on the cloud
Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki
Organizational preparedness for the use of large language models in pathology informatics
In this paper, we consider the current and potential role of the latest generation of Large Language Models (LLMs) in medical informatics, particularly within the realms of clinical and anatomic pathology. We aim to provide a thorough understanding of the considerations that arise when employing LLMs in healthcare settings, such as determining appropriate use cases and evaluating the advantages and limitations of these models. Furthermore, this paper will consider the infrastructural and organizational requirements necessary for the successful implementation and utilization of LLMs in healthcare environments. We will discuss the importance of addressing education, security, bias, and privacy concerns associated with LLMs in clinical informatics, as well as the need for a robust framework to overcome regulatory, compliance, and legal challenges
DGIdb 2.0: Mining clinically relevant drug-gene interactions
The Drug–Gene Interaction Database (DGIdb, www. dgidb.org) is a web resource that consolidates dis-parate data sources describing drug–gene interac-tions and gene druggability. It provides an intuitive graphical user interface and a documented applica-tion programming interface (API) for querying these data. DGIdb was assembled through an extensive manual curation effort, reflecting the combined in-formation of twenty-seven sources. For DGIdb 2.0, substantial updates have been made to increase content and improve its usefulness as a resource for mining clinically actionable drug targets. Specif-ically, nine new sources of drug–gene interactions have been added, including seven resources specifi-cally focused on interactions linked to clinical trials. These additions have more than doubled the over-all count of drug–gene interactions. The total num-ber of druggable gene claims has also increased by 30%. Importantly, a majority of the unrestricted, publicly-accessible sources used in DGIdb are now automatically updated on a weekly basis, providing the most current information for these sources. Fi-nally, a new web view and API have been developed to allow searching for interactions by drug identifiers to complement existing gene-based search function-ality. With these updates, DGIdb represents a com-prehensive and user friendly tool for mining the druggable genome for precision medicine hypothe-sis generation
Standard operating procedure for curation and clinical interpretation of variants in cancer
Manually curated variant knowledgebases and their associated knowledge models are serving an increasingly important role in distributing and interpreting variants in cancer. These knowledgebases vary in their level of public accessibility, and the complexity of the models used to capture clinical knowledge. CIViC (Clinical Interpretation of Variants in Cancer - www.civicdb.org) is a fully open, free-to-use cancer variant interpretation knowledgebase that incorporates highly detailed curation of evidence obtained from peer-reviewed publications and meeting abstracts, and currently holds over 6300 Evidence Items for over 2300 variants derived from over 400 genes. CIViC has seen increased adoption by, and also undertaken collaboration with, a wide range of users and organizations involved in research. To enhance CIViC\u27s clinical value, regular submission to the ClinVar database and pursuit of other regulatory approvals is necessary. For this reason, a formal peer reviewed curation guideline and discussion of the underlying principles of curation is needed. We present here the CIViC knowledge model, standard operating procedures (SOP) for variant curation, and detailed examples to support community-driven curation of cancer variants
Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing
Open-Sourced CIViC Annotation Pipeline to identify and annotate clinically relevant variants using single-molecule molecular inversion probes
PURPOSE: Clinical targeted sequencing panels are important for identifying actionable variants for patients with cancer; however, existing approaches do not provide transparent and rationally designed clinical panels to accommodate the rapidly growing knowledge within oncology.
MATERIALS AND METHODS: We used the Clinical Interpretations of Variants in Cancer (CIViC) database to develop an Open-Sourced CIViC Annotation Pipeline (OpenCAP). OpenCAP provides methods to identify variants within the CIViC database, build probes for variant capture, use probes on prospective samples, and link somatic variants to CIViC clinical relevance statements. OpenCAP was tested using a single-molecule molecular inversion probe (smMIP) capture design on 27 cancer samples from 5 tumor types. In total, 2,027 smMIPs were designed to target 111 eligible CIViC variants (61.5 kb of genomic space).
RESULTS: When compared with orthogonal sequencing, CIViC smMIP sequencing demonstrated a 95% sensitivity for variant detection (n = 61 of 64 variants). Variant allele frequencies for variants identified on both sequencing platforms were highly concordant (Pearson\u27s
CONCLUSION: The OpenCAP design paradigm demonstrates the utility of an open-source and open-access database built on attendant community contributions with peer-reviewed interpretations. Use of a public repository for variant identification, probe development, and variant interpretation provides a transparent approach to build dynamic next-generation sequencing-based oncology panels
- …