12 research outputs found

    Injury Outcome in Crashes with Guardrail End Terminals

    No full text
    <div><p><b>Objective</b>: The goal of this study is to evaluate the crash performance of guardrail end terminals in real-world crashes. Guardrail end terminals are installed at the ends of guardrail systems to prevent the rail from spearing through the car in an end-on collision. Recently, there has been a great deal of controversy as to the safety of certain widely used end terminal designs, partly because there is surprisingly little real-world crash data for end terminals. Most existing studies of end terminal crashes used data from prior to the mid-1990s. Since then, there have been large improvements to vehicle crashworthiness and seat belt usage rates, as well as new roadside safety hardware compliant with National Cooperative Highway Research Program (NCHRP) Report 350, “Recommended Procedures for the Safety Performance Evaluation of Highway Features.” Additionally, most existing studies of injury in end terminal crashes do not account for factors such as the occurrence of rollover. This analysis uses more recent crash data that represent post-1990s vehicle fleet changes and account for a number of factors that may affect driver injury outcome and rollover occurrence.</p><p><b>Methods</b>: Passenger vehicle crashes coded as involving guardrail end terminals were identified in the set of police-reported crashes in Michigan in 2011 and 2012. End terminal performance was expected to be a function of end terminal system design. State crash databases generally do not identify specific end terminal systems. In this study, the coded crash location was used to obtain photographs of the crash site prior to the crash from Google Street View. These site photographs were manually inspected to identify the particular end terminal system involved in the crash. Multiple logistic regression was used to test for significant differences in the odds of driver injury and rollover between different terminal types while accounting for other factors.</p><p><b>Results</b>: A total of 1,001 end terminal crashes from the 2011–2012 Michigan State crash data were manually inspected to identify the terminal that had been struck. Four hundred fifty-one crashes were found to be suitable for analysis. Serious to fatal driver injury occurred in 3.8% of end terminal crashes, moderate to fatal driver injury occurred in 11.8%, and 72.3% involved property damage only. No significant difference in moderate to fatal driver injury odds was observed between NCHRP 350 compliant end terminals and noncompliant terminals. Car drivers showed odds of moderate to fatal injury 3.6 times greater than LTV drivers in end terminal crashes. Rollover occurrence was not significantly associated with end terminal type.</p><p><b>Conclusions</b>: Car drivers have greater potential for injury in end terminal crashes than light truck/van/sport utility vehicle drivers. End terminal designs compliant with NCHRP 350 did not appear to carry different odds of moderate driver injury than noncompliant end terminals. The findings account for driver seat belt use, rollover occurrence, terminal orientation (leading/trailing), control loss, and the number of impact events. Rollover and nonuse of seat belts carried much larger increases in injury potential than end terminal type. Rollover did not appear to be associated with NCHRP 350 compliance.</p></div

    Electrical Guidance Efficiency of Downstream-Migrating Juvenile Sea Lampreys Decreases with Increasing Water Velocity

    No full text
    <p>We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys <i>Petromyzon marinus</i> to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm<sup>3</sup>. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.</p> <p>Received April 26, 2016; accepted November 1, 2016 Published online February 13, 2017</p

    Test of a Nonphysical Barrier Consisting of Light, Sound, and Bubble Screen to Block Upstream Movement of Sea Lampreys in an Experimental Raceway

    No full text
    <p>Control of the invasive Sea Lamprey <i>Petromyzon marinus</i> is critical for management of commercial and recreational fisheries in the Laurentian Great Lakes. Use of physical barriers to block Sea Lampreys from spawning habitat is a major component of the control program. However, the resulting interruption of natural streamflow and blockage of nontarget species present substantial challenges. Development of an effective nonphysical barrier would aid the control of Sea Lampreys by eliminating their access to spawning locations while maintaining natural streamflow. We tested the effect of a nonphysical barrier consisting of strobe lights, low-frequency sound, and a bubble screen on the movement of Sea Lampreys in an experimental raceway designed as a two-choice maze with a single main channel fed by two identical inflow channels (one control and one blocked). Sea Lampreys were more likely to move upstream during trials when the strobe light and low-frequency sound were active compared with control trials and trials using the bubble screen alone. For those Sea Lampreys that did move upstream to the confluence of inflow channels, no combination of stimuli or any individual stimulus significantly influenced the likelihood that Sea Lampreys would enter the blocked inflow channel, enter the control channel, or return downstream.</p> <p>Received October 4, 2016; accepted March 15, 2017 Published online May 4, 2017</p

    A simple, cost-effective emitter for controlled release of fish pheromones: Development, testing, and application to management of the invasive sea lamprey

    No full text
    <div><p>Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.</p></div

    Migratory sea lamprey do not respond to the odor of PEG6000.

    No full text
    <p>Dissolution of PEG6000 (stimulus) into one side of the laboratory raceway did not alter the lateral distribution of sea lamprey vs. the pre-stimulus period (paired t-test, n = 8, P = 0.69).</p

    Housing the PEG6000 emitter better controlled the rate of dissolution at high water velocity.

    No full text
    <p>In a recirculating flume, increasing water velocity accelerated the rate of PEG6000 dissolution. However, housing the emitter (filled circles, r<sup>2</sup> = 0.69) reduced the effect of velocity on the dissolution rate at velocities >0.25 m s<sup>-1</sup> relative to emitters fully exposed to the flow (white circles, r<sup>2</sup> = 0.87). Linear regression fits with 95% CI (dashed lines) are included to illustrate the patterns, see text for GLM results.</p

    Emitter housing and test tank used during Objective 4.

    No full text
    <p>(a) Design of the emitter housing. The emitter was attached to the dowel with a single rubber band. The housing was mounted in the flow tank as shown, with the bottom open to the water. (b) Schematic of the recirculating flume tank. Flow was maintained with two trolling motors mounted upstream of a PVC collimator. During each trial five emitters were mounted at mid-depth and equidistant across the channel.</p

    A schematic of the Ocqueoc River field site.

    No full text
    <p>(a) Lampreys were held in cages at the release point (RP) until the start of the trial. The upstream test area (TA) was equipped with four PIT antennas; two to detect upstream movement into the area (#1 and #2), and one each surrounding the point of emission of 3kPZS, either by polymer emitter or pump tube, to detect attraction (#3 and #4). (b) Detail of the 3kPZS emission apparatus. The PIT antenna surrounded a simulated lamprey nest. At the center of the nest either a PEG6000 emitter was placed (both tests), or the end of a buried tube emerged from the sediment (Test #2 only). When used, the 3kPZS-methanol mixture was pumped from a carboy placed on the platform. In both diagrams the white arrows indicate the direction of water flow.</p

    Performance of the emitter-baited traps (vs. a paired unbaited trap) during sea lamprey control operations.

    No full text
    <p>(a) Box and whisker plots of historical trap efficiency (proportion of the run captured) for each stream as estimated by mark-recapture (data obtained from P. Hrodey, USFWS, outliers omitted). The black triangle indicates the observed trap efficiency during 2012 when 3kPZS-PEG6000 emitters were applied, “n” indicates the number of years historical trap efficiency was estimated. (b) The proportion of the total catch that was captured in the 3kPZS emitter-baited trap with 95% binomial confidence intervals, “n” refers to the total number of sea lamprey captured in baited and unbaited traps during 2012. The dashed line indicates the null expectation of equal catch rate between the paired traps if the 3kPZS-PEG6000 emitter did not influence capture rate (which trap received the bait was alternated on subsequent nights).</p
    corecore