64 research outputs found

    Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale

    Full text link
    PURPOSE To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD). MATERIALS AND METHODS The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique. RESULTS The primary end point is the occurrence of late adverse events, defined as aneurysm formation (≥6 cm), rapid expansion of the aorta (≥1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling. CONCLUSION This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVAR© RSNA, 2022See also the commentary by Rajiah in this issue

    The Light Responsive Transcriptome of the Zebrafish: Function and Regulation

    Get PDF
    Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or “entrained” by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression

    Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients

    Full text link

    Vascular Deformation Mapping (VDM) of Thoracic Aortic Enlargement in Aneurysmal Disease and Dissection

    No full text
    Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique

    Vascular Deformation Mapping of Abdominal Aortic Aneurysm

    No full text
    Abdominal aortic aneurysm (AAA) is a complex disease that requires regular imaging surveillance to monitor for aneurysm stability. Current imaging surveillance techniques use maximum diameter, often assessed by computed tomography angiography (CTA), to assess risk of rupture and determine candidacy for operative repair. However, maximum diameter measurements can be variable, do not reliably predict rupture risk and future AAA growth, and may be an oversimplification of complex AAA anatomy. Vascular deformation mapping (VDM) is a recently described technique that uses deformable image registration to quantify three-dimensional changes in aortic wall geometry, which has been previously used to quantify three-dimensional (3D) growth in thoracic aortic aneurysms, but the feasibility of the VDM technique for measuring 3D growth in AAA has not yet been studied. Seven patients with infra-renal AAAs were identified and VDM was used to identify three-dimensional maps of AAA growth. In the present study, we demonstrate that VDM is able to successfully identify and quantify 3D growth (and the lack thereof) in AAAs that is not apparent from maximum diameter. Furthermore, VDM can be used to quantify growth of the excluded aneurysm sac after endovascular aneurysm repair (EVAR). VDM may be a useful adjunct for surgical planning and appears to be a sensitive modality for detecting regional growth of AAAs
    • …
    corecore