12,050 research outputs found

    Double-diffusive instabilities of a shear-generated magnetic layer

    Get PDF
    Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.Comment: Submitted to ApJ

    The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    Get PDF
    Recently, Silvers, Vasil, Brummell, & Proctor (2009), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or "surfs") on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.Comment: 9 pages; 3 figures; accepted to appear in IAU symposium 27

    Heat Capacity Evidence for the Suppression of Skyrmions at Large Zeeman Energy

    Full text link
    Measurements on a multilayer two-dimensional electron system (2DES) near Landau level filling ν\nu=1 reveal the disappearance of the nuclear spin contribution to the heat capacity as the ratio g~\tilde{g} between the Zeeman and Coulomb energies exceeds a critical value g~c≈\tilde{g}_c \approx0.04. This disappearance suggests the vanishing of the Skyrmion-mediated coupling between the lattice and the nuclear spins as the spin excitations of the 2DES make a transition from Skyrmions to single spin-flips above g~c\tilde{g}_c. Our experimental g~c\tilde{g}_c is smaller than the calculated g~c\tilde{g}_c=0.054 for an ideal 2DES; we discuss possible origins of this discrepancy.Comment: Experimental paper, 6 figure

    Effect of in-plane magnetic field on the photoluminescence spectrum of modulation-doped quantum wells and heterojunctions

    Full text link
    The photoluminescence (PL) spectrum of modulation-doped GaAs/AlGaAs quantum wells (MDQW) and heterojunctions (HJ) is studied under a magnetic field (B∥B_{\|}) applied parallel to the two-dimensional electron gas (2DEG) layer. The effect of B∥B_{\|} strongly depends on the electron-hole separation (dehd_{eh}), and we revealed remarkable B∥B_{\|}-induced modifications of the PL spectra in both types of heterostructures. A model considering the direct optical transitions between the conduction and valence subband that are shifted in k-space under B∥B_{\|}, accounts qualitatively for the observed spectral modifications. In the HJs, the PL intensity of the bulk excitons is strongly reduced relatively to that of the 2DEG with increasing B∥B_{\|}. This means that the distance between the photoholes and the 2DEG decreases with increased B∥B_{\|}, and that free holes are responsible for the hole-2DEG PL.Comment: 6pages, 5figure

    Computation in Classical Mechanics

    Full text link
    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic

    Exchange interaction effects in inter-Landau level Auger scattering in a two-dimensional electron gas

    Full text link
    We consider the influence of spin effects on the inter-Landau level electron-electron scattering rate in a two-dimensional electron gas. Due to the exchange spin splitting, the Landau levels are not equidistant. This leads to the suppresion of Auger processes and a nonlinear dependence of the lifetime on the concentration of the excited electrons even at very low excitation levels.Comment: 10 pages, 3 figure
    • …
    corecore