3,545 research outputs found

    Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    Full text link
    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problem in astrophysics and cosmology, ripe for major advances, whose resolution will likely require new physics.Comment: 27 pages, 14 figure

    An AGN Identification for 3EG J2006-2321

    Get PDF
    We present a multiwavelength analysis of the high-energy gamma-ray source 3EG J2006-2321. The flux of this source above 100 MeV is shown to be variable on time scales of days and months. Optical observations and careful examination of archived radio data indicate that its radio counterpart is PMN J2005-2310, a flat-spectrum radio quasar with a 5-GHz flux density of 260 mJy. Study of the V=18.7V=18.7 optical counterpart indicates a redshift of 0.833 and variable linear polarization. No X-ray source has been detected near the position of PMN J2005-2310, but an X-ray upper limit is derived from ROSAT data. This upper limit provides for a spectral energy distribution with global characteristics similar to those of known gamma-ray blazars. Taken together, these data indicate that 3EG J2006-2321, listed as unidentified in the 3rd EGRET Catalog, is a member of the blazar class of AGN. The 5-GHz radio flux density of this blazar is the lowest of the 68 EGRET-detected AGN. The fact that EGRET has detected such a source has implications for unidentified EGRET sources, particularly those at high latitudes (∣b∣>30∘|b|>30^{\circ}), many of which may be blazars.Comment: 22 pages, 6 figures. To appear in ApJ v569 n1, 10 April 200

    Why Capillary Flows in Slender Triangular Grooves Are So Stable Against Disturbances

    Get PDF
    Ongoing development of fuel storage and delivery systems for space probes, interplanetary vehicles, satellites, and orbital platforms continues to drive interest in propellant management systems that utilize surface tension to retain, channel, and control flow in microgravity environments. Although it has been known for decades that capillary flows offer an ideal method of fuel management, there has been little research devoted to the general stability properties of such flows. In this work we demonstrate theoretically why capillary flows which channel wetting liquids in slender open triangular channels tend to be very stable against disturbances. By utilizing the gradient flow form of the governing fluid interface equation, we first prove that stationary interfaces in the presence of steady flow are asymptotically nonlinearly and exponentially stable in the Lyapunov sense. We then demonstrate that fluid interfaces exhibiting self-similar Washburn dynamics are transiently and asymptotically linearly stable to small perturbations. This second finding relies on a generalized nonmodal stability analysis due to the non-normality of the governing disturbance operator. Taken together, these findings reveal the robust nature of transient and steady capillary flows in open grooved channels and likely explain the prevalent use of capillary flow management systems in many emerging technologies ranging from CubeSats to point-of-care microfluidic diagnostic systems

    X-Ray Gas Temperatures in the Arc Clusters MS0440+204 and MS0302+1658

    Get PDF
    The cluster of galaxies MS0440+02, originally discovered through its X-ray emission, was part of an optical observational program to search for arcs and arclets in a complete sample of X-ray luminous, medium-distant clusters of galaxies. Mauna Kea CCD images of MS0440+02 showed a remarkable optical morphology. The core of the cluster contains 6 bright galaxies and numerous fainter ones embedded in a low surface brightness halo. Besides, MS0440+02 is the most spectacular example that we have found of an arc system in a compact condensed cluster, with arcs symmetrically distributed to draw almost perfect circles around the cluster center. Giant arcs are magnified images of distant galaxies, gravitationally distorted by massive foreground clusters. It is of great importance to compare the results of the lensing studies with those derived from X-ray observations, as the two are independent methods of studying the mass distribution. Thus MS0440+02 was the ideal target to obtain temperature measurement with ASCA and good spatial resolution X-ray observations with ROSAT. The X-ray data have been used in conjunction with Hubble Space Telescope observations to put more stringent constrains on the mass estimates. Most of the different wavelength datasets have been reduced and analyzed. Mass determinations have been separately obtained from galaxy virial motions and X-ray profile fitting using the cluster gas temperature as measured by the ASCA satellite. Assuming that the hot gas is in hydrostatic equilibrium and in a spherical potential, we find from the X-ray data a mass distribution profile that is well described by a Beta model. From the multiple images formed by gravitational lensing (HST data) using the modelling of the gravitational lensed arcs, we have derived Beta model. To reconcile the mass estimates we have explored the possibility of having a supercluster surrounding the MOS0440 cluster, that is a model with two isothermal spheres, one embedded inside the other. These results have been published or are in press

    Linear-scaling DFT+U with full local orbital optimization

    Get PDF
    We present an approach to the DFT+U method (Density Functional Theory + Hubbard model) within which the computational effort for calculation of ground state energies and forces scales linearly with system size. We employ a formulation of the Hubbard model using nonorthogonal projector functions to define the localized subspaces, and apply it to a local-orbital DFT method including in situ orbital optimization. The resulting approach thus combines linear-scaling and systematic variational convergence. We demonstrate the scaling of the method by applying it to nickel oxide nano-clusters with sizes exceeding 7,000 atoms.Comment: 10 pages, 4 figures. This version (v3) matches that accepted for Physical Review B on 30th January 201

    Probing the Masses of the PSR J0621+1002 Binary System Through Relativistic Apsidal Motion

    Get PDF
    Orbital, spin and astrometric parameters of the millisecond pulsar PSR J0621+1002 have been determined through six years of timing observations at three radio telescopes. The chief result is a measurement of the rate of periastron advance, omega_dot = 0.0116 +/- 0.0008 deg/yr. Interpreted as a general relativistic effect, this implies the sum of the pulsar mass, m_1, and the companion mass, m_2, to be M = m_1 + m_2 = 2.81 +/- 0.30 msun. The Keplerian parameters rule out certain combinations of m_1 and m_2, as does the non-detection of Shapiro delay in the pulse arrival times. These constraints, together with the assumption that the companion is a white dwarf, lead to the 68% confidence maximum likelihood values of m_1 = 1.70(+0.32 -0.29) msun and m_2 =0.97(+0.27 - 0.15) msun and to the 95% confidence maximum likelihood values of m_1 = 1.70(+0.59 -0.63) msun and m_2 = 0.97(+0.43 -0.24) msun. The other major finding is that the pulsar experiences dramatic variability in its dispersion measure (DM), with gradients as steep as 0.013 pc cm^{-3} / yr. A structure function analysis of the DM variations uncovers spatial fluctuations in the interstellar electron density that cannot be fit to a single power law, unlike the Kolmogorov turbulent spectrum that has been seen in the direction of other pulsars. Other results from the timing analysis include the first measurements of the pulsar's proper motion, mu = 3.5 +/- 0.3 mas / yr, and of its spin-down rate, dP/dt = 4.7 x 10^{-20}, which, when corrected for kinematic biases and combined with the pulse period, P = 28.8 ms, gives a characteristic age of 1.1 x 10^{10} yr and a surface magnetic field strength of 1.2 x 10^{9} G.Comment: Accepted by ApJ, 10 pages, 5 figure

    Improved two-stage estimation to adjust for treatment switching in randomised trials:g-estimation to address time-dependent confounding

    Get PDF
    In oncology trials, control group patients often switch onto the experimental treatment during follow-up, usually after disease progression. In this case, an intention-to-treat analysis will not address the policy question of interest – that of whether the new treatment represents an effective and cost-effective use of health care resources, compared to the standard treatment. Rank preserving structural failure time models (RPSFTM), inverse probability of censoring weights (IPCW) and two-stage estimation (TSE) have often been used to adjust for switching to inform treatment reimbursement policy decisions. TSE has been applied using a simple approach (TSEsimp), assuming no time-dependent confounding between the time of disease progression and the time of switch. This is problematic if there is a delay between progression and switch. In this paper we introduce TSEgest, which uses structural nested models and g-estimation to account for time-dependent confounding, and compare it to TSEsimp, RPSFTM and IPCW. We simulated scenarios where control group patients could switch onto the experimental treatment with and without time-dependent confounding being present. We varied switching proportions, treatment effects and censoring proportions. We assessed adjustment methods according to their estimation of control group restricted mean survival times that would have been observed in the absence of switching. All methods performed well in scenarios with no time-dependent confounding. TSEgest and RPSFTM continued to perform well in scenarios with time-dependent confounding, but TSEsimp resulted in substantial bias. IPCW also performed well in scenarios with time-dependent confounding, except when inverse probability weights were high in relation to the size of the group being subjected to weighting, which occurred when there was a combination of modest sample size and high switching proportions. TSEgest represents a useful addition to the collection of methods that may be used to adjust for treatment switching in trials in order to address policy-relevant questions
    • …
    corecore