15 research outputs found
The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser
This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 83, 043107 (2012) and may be found at https://doi.org/10.1063/1.3698294.The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480–2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser
Recommended from our members
A second beam-diagnostic beamline for the advanced light source
A second beamline, BL 7.2, completely dedicated to beam diagnostics is being installed at the Advanced Light Source (ALS). The design has been optimized for the measurement of the momentum spread and emittance of the stored beam in combination with the existing diagnostic beamline, BL 3.1. A detailed analysis of the experimental error has allowed the definition of the system parameters. The obtained requirements found a good matching with a simple and reliable system based on the detection of X-ray synchrotron radiation (SR) through a pinhole system. The actual beamline, which also includes a port for visible and infrared SR as well as an X-ray beam position monitor (BPM), is mainly based on the design of two similar diagnostic beamlines at BESSY II. This approach allowed a significant saving in time, cost and engineering effort. The design criteria, including a summary of the experimental error analysis, as well as a brief description of the beamline are presented
Recommended from our members
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization
Recommended from our members
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization
Recommended from our members
Beam Measurements and Upgrade at BL 7.2, the Second Diagnostics Beamline of the Advanced Light Source
Beamline 7.2 of the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) is a beam diagnostics system that uses the synchrotron radiation emitted by a dipole magnet. It consists of two branches; in the first one the x-ray portion of the radiation is used in a pinhole camera system for measuring the transverse profile of the beam. The second branch is equipped with an x-ray beam position monitor (BPM) and with a multipurpose port where the visible and the far-infrared part of the radiation can be used for various applications such as bunch length measurements and IR coherent synchrotron radiation experiments. The pinhole system has been operating successfully since the end of 2003. The installation of the second branch has been completed recently and the results of its commissioning are presented in this paper together with examples of beam measurements performed at BL 7.2
Recommended from our members
SIBYLS - A SAXS and protein crystallography beamline at the ALS
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements, consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/ΔE~;1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec/400 mA through a 100μm pinhole at 12.4 KeV. For SAXS the flux is up to 3x1013 photons/sec/400 mA at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described
Recommended from our members
SIBYLS - A SAXS and protein crystallography beamline at the ALS
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements, consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described
Recommended from our members
A Beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source
A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/ΔE≃7000) and W/B₄C multilayers (E/ΔE≃100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.9 page(s