1,305 research outputs found

    Statistical Power, the Bispectrum and the Search for Non-Gaussianity in the CMB Anisotropy

    Full text link
    We use simulated maps of the cosmic microwave background anisotropy to quantify the ability of different statistical tests to discriminate between Gaussian and non-Gaussian models. Despite the central limit theorem on large angular scales, both the genus and extrema correlation are able to discriminate between Gaussian models and a semi-analytic texture model selected as a physically motivated non-Gaussian model. When run on the COBE 4-year CMB maps, both tests prefer the Gaussian model. Although the bispectrum has comparable statistical power when computed on the full sky, once a Galactic cut is imposed on the data the bispectrum loses the ability to discriminate between models. Off-diagonal elements of the bispectrum are comparable to the diagonal elements for the non-Gaussian texture model and must be included to obtain maximum statistical power.Comment: Accepted for publication in ApJ; 20 pages, 6 figures, uses AASTeX v5.

    Moving Atom-Field Interaction: Correction to Casimir-Polder Effect from Coherent Back-action

    Full text link
    The Casimir-Polder force is an attractive force between a polarizable atom and a conducting or dielectric boundary. Its original computation was in terms of the Lamb shift of the atomic ground state in an electromagnetic field (EMF) modified by boundary conditions along the wall and assuming a stationary atom. We calculate the corrections to this force due to a moving atom, demanding maximal preservation of entanglement generated by the moving atom-conducting wall system. We do this by using non-perturbative path integral techniques which allow for coherent back-action and thus can treat non-Markovian processes. We recompute the atom-wall force for a conducting boundary by allowing the bare atom-EMF ground state to evolve (or self-dress) into the interacting ground state. We find a clear distinction between the cases of stationary and adiabatic motions. Our result for the retardation correction for adiabatic motion is up to twice as much as that computed for stationary atoms. We give physical interpretations of both the stationary and adiabatic atom-wall forces in terms of alteration of the virtual photon cloud surrounding the atom by the wall and the Doppler effect.Comment: 16 pages, 2 figures, clarified discussions; to appear in Phys. Rev.

    Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx

    Get PDF
    We present optical and infrared photometry of the unusual Type Ia supernova 2000cx. With the data of Li et al. (2001) and Jha (2002), this comprises the largest dataset ever assembled for a Type Ia SN, more than 600 points in UBVRIJHK. We confirm the finding of Li et al. regarding the unusually blue B-V colors as SN 2000cx entered the nebular phase. Its I-band secondary hump was extremely weak given its B-band decline rate. The V minus near infrared colors likewise do not match loci based on other slowly declining Type Ia SNe, though V-K is the least ``abnormal''. In several ways SN 2000cx resembles other slow decliners, given its B-band decline rate (Delta m_15(B) = 0.93), the appearance of Fe III lines and weakness of Si II in its pre-maximum spectrum, the V-K colors and post-maximum V-H colors. If the distance modulus derived from Surface Brightness Fluctuations of the host galaxy is correct, we find that the rate of light increase prior to maximum, the characteristics of the bolometric light curve, and the implied absolute magnitude at maximum are all consistent with a sub-luminous object with Delta m_15(B) ~ 1.6-1.7 having a higher than normal kinetic energy.Comment: 46 pages, 17 figures, to be published in Publications of the Astronomical Society of the Pacifi

    Optical Photometry of the Type Ia SN 1999ee and the Type Ib/c SN 1999ex in IC 5179

    Get PDF
    We present UBVRIz lightcurves of the Type Ia SN 1999ee and the Type Ib/c SN 1999ex, both located in the galaxy IC 5179. SN 1999ee has an extremely well sampled lightcurve spanning from 10 days before Bmax through 53 days after peak. Near maximum we find systematic differences ~0.05 mag in photometry measured with two different telescopes, even though the photometry is reduced to the same local standards around the supernova using the specific color terms for each instrumental system. We use models for our bandpasses and spectrophotometry of SN 1999ee to derive magnitude corrections (S-corrections) and remedy this problem. This exercise demonstrates the need of accurately characterizing the instrumental system before great photometric accuracies of Type Ia supernovae can be claimed. It also shows that this effect can have important astrophysical consequences since a small systematic shift of 0.02 mag in the B-V color can introduce a 0.08 mag error in the extinction corrected peak B magnitudes of a supernova and thus lead to biased cosmological parameters. The data for the Type Ib/c SN 1999ex present us with the first ever observed shock breakout of a supernova of this class. These observations show that shock breakout occurred 18 days before Bmax and support the idea that Type Ib/c supernovae are due to core collapse of massive stars rather than thermonuclear disruption of white dwarfs.Comment: 55 pages, 15 figures, accepted by the Astronomical Journa

    Single-dose pharmacokinetic and toxicity analysis of pyrrole–imidazole polyamides in mice

    Get PDF
    Purpose: Pyrrole–imidazole (Py-Im) polyamides are programmable, sequence-specific DNA minor groove–binding ligands. Previous work in cell culture has shown that various polyamides can be used to modulate the transcriptional programs of oncogenic transcription factors. In this study, two hairpin polyamides with demonstrated activity against androgen receptor signaling in cell culture were administered to mice to characterize their pharmacokinetic properties. Methods: Py-Im polyamides were administered intravenously by tail vein injection. Plasma, urine, and fecal samples were collected over a 24-h period. Liver, kidney, and lung samples were collected postmortem. Concentrations of the administered polyamide in the plasma, excretion, and tissue samples were measured using LC/MS/MS. The biodistribution data were analyzed by both non-compartmental and compartmental pharmacokinetic models. Animal toxicity experiments were also performed by monitoring weight loss after a single subcutaneous (SC) injection of either polyamide. Results: The biodistribution profiles of both compounds exhibited rapid localization to the liver, kidneys, and lungs upon injection. Plasma distribution of the two compounds showed distinct differences in the rate of clearance, the volume of distribution, and the AUCs. These two compounds also have markedly different toxicities after SC injection in mice. Conclusions: The variations in pharmacokinetics and toxicity in vivo stem from a minor chemical modification that is also correlated with differing potency in cell culture. The results obtained in this study could provide a structural basis for further improvement of polyamide activity both in cell culture and in animal models
    corecore