3,130 research outputs found

    Orientability thresholds for random hypergraphs

    Full text link
    Let h>w>0h>w>0 be two fixed integers. Let \orH be a random hypergraph whose hyperedges are all of cardinality hh. To {\em ww-orient} a hyperedge, we assign exactly ww of its vertices positive signs with respect to the hyperedge, and the rest negative. A (w,k)(w,k)-orientation of \orH consists of a ww-orientation of all hyperedges of \orH, such that each vertex receives at most kk positive signs from its incident hyperedges. When kk is large enough, we determine the threshold of the existence of a (w,k)(w,k)-orientation of a random hypergraph. The (w,k)(w,k)-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when h=2h=2 and w=1w=1, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran, which settled a conjecture of Karp and Saks.Comment: 47 pages, 1 figures, the journal version of [16
    corecore