2 research outputs found

    Hepatitis B Virus Capsid Completion Occurs through Error Correction

    No full text
    Understanding capsid assembly is important because of its role in virus lifecycles and in applications to drug discovery and nanomaterial development. Many virus capsids are icosahedral, and assembly is thought to occur by the sequential addition of capsid protein subunits to a nucleus, with the final step completing the icosahedron. Almost nothing is known about the final (completion) step because the techniques usually used to study capsid assembly lack the resolution. In this work, charge detection mass spectrometry (CDMS) has been used to track the assembly of the <i>T</i> = 4 hepatitis B virus (HBV) capsid in real time. The initial assembly reaction occurs rapidly, on the time scale expected from low resolution measurements. However, CDMS shows that many of the particles generated in this process are defective and overgrown, containing more than the 120 capsid protein dimers needed to form a perfect <i>T</i> = 4 icosahedron. The defective and overgrown capsids self-correct over time to the mass expected for a perfect <i>T</i> = 4 capsid. Thus, completion is a distinct phase in the assembly reaction. Capsid completion does not necessarily occur by inserting the last building block into an incomplete, but otherwise perfect icosahedron. The initial assembly reaction can be predominently imperfect, and completion involves the slow correction of the accumulated errors

    Chemical and Physical Transformations of Aluminosilicate Clay Minerals Due to Acid Treatment and Consequences for Heterogeneous Ice Nucleation

    No full text
    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma–atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity
    corecore