1,202 research outputs found
Resuscitation-promoting factors possess a lysozyme-like domain
The novel bacterial cytokine family – resuscitation-promoting factors (Rpfs) – share a conserved domain of uncharacterized function. Predicting the structure of this domain suggests that Rpfs possess a lysozyme-like domain. The model highlights the good conservation of residues involved in catalysis and substrate binding. A lysozyme-like function makes sense for this domain in the light of experimental characterization of the biological function of Rpfs
Multiple GF-1 binding sites flank the erythroid specific transcription unit of the human carbonic anhydrase I gene
AbstractSix potential GF-1 sites which bind an erythroid factor are present in the 5' and 3' regions flanking the erythroid-speciflc transcription unit of the human carbonic anhydrase 1 (HCAI) gene. When two of these sites are placed upstream of a minimal eukaryotic promoter they confer upregulated expression in erythroid over non-erythroid cells. The presence of the erythroid factor in TPA-treated HEL cells in which the level of HCAI transcript has greatly decreased and in non-HCAI-expressing K562 cells suggests that in these cases the presence of the factor is not sufficient for HCAI expression
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme.
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication
Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment
Outer membrane and membrane vesicles (OMV/MV) are released from bacteria and participate in cell communication, biofilm formation and host-pathogen interactions. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that catalyze post-translational deimination/citrullination of proteins, causing structural and functional changes in target proteins. PADs also play major roles in the regulation of eukaryotic extracellular vesicle release. Here we show phylogenetically conserved pathways of PAD-mediated OMV/MV release in bacteria and describe deiminated/citrullinated proteins in E. coli and their derived OMV/MVs. Furthermore, we show that PAD inhibitors can be used to effectively reduce OMV/MV release, both in Gram-negative and Gram-positive bacteria. Importantly, this resulted in enhanced antibiotic sensitivity of both E. coli and S. aureus to a range of antibiotics tested. Our findings reveal novel strategies for applying pharmacological OMV/MV-inhibition to reduce antibiotic resistance
Inversion of Plasmaspheric EUV Remote Sensing Data from the STP 72-1 Satellite
Observations of the extreme ultraviolet emission of helium ions at 30.4 nm can be used to study the global shape of the plasmasphere and its dynamical response to geomagnetic forcing. In order to retrieve number densities of plasmaspheric He+ from such observations, we have developed a new inversion technique based on discrete inverse theory, which uses the optical data to optimize a parameterized model of the He+ distribution. We apply this inversion technique to several orbits of data obtained from the Naval Research Laboratory extreme ultraviolet photometric experiment launched on the STP 72-1 satellite in October 1972. The inversion is limited to nighttime conditions where contamination from the topside ionosphere is minimal and where a simple parameterization of the He+ number density is applicable. We obtain excellent fits to the data; however, some of the retrieved model parameters have large uncertainties due to inadequate sampling of the plasmasphere. Our study shows that improved sampling using observations from different locations and view directions would significantly enhance the accuracy of the retrieved model parameters. Using a newly developed three-dimensional imaging tool to visualize the plasmaspheric regions being sampled remotely, we demonstrate that emission features observed from two of the STP 72-1 orbits originate beyond the plasmasphere. Estimated number densities of this feature are roughly consistent with observations of cold plasma seen at geosynchronous orbit by in situ experiments
'Heaven starts at your parents' feet' : adolescent bowing to parents and associated spiritual attitudes
In a quantitative survey of religious attitudes and practices in a multi-religious sample of
369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was
found widespread in 22% of adolescents spanning several religious affiliations and
ethnicities – especially Buddhists, Hindus and those of Indian, African and ‘Other Asian’
ethnicity. Whether an adolescent bowed correlated significantly with spiritual attitudes such
as wanting to abstain from alcohol, hearing religious stories, being inspired by religious
festivals and liking the idea of seeing God in everything. Findings suggest bowing to
parents can have religious significance on all three levels of Jackson’s Interpretive
Approach and therefore cannot be regarded as a ‘cultural accretion’ of religion. Study of
bowing to parents could form a unifying exercise in shared values for study of religion in
the plural classroom and facilitate community cohesion in certain religious membership
groups
'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile
Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the ‘dopamine-first’ mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity
The emergence of integrated information, complexity, and \u27consciousness\u27 at criticality
© 2020 by the authors. Integrated Information Theory (IIT) posits that integrated information (F) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate F as a function of temperature in toy models of fully connected neural networks. A Monte-Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that F can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model
Isotropic atomic layer etching of GaN using SF<sub>6</sub> plasma and Al(CH<sub>3</sub>)<sub>3</sub>
GaN is an enabling material for light emitting diodes, advanced radio frequency, and power semiconductor devices. However, fabrication of GaN devices often relies on harsh etch processes, which can leave an etch damage layer, limiting final device performance. In this work, an isotropic atomic layer etching (ALE) process involving SF6 plasma and trimethylaluminium [Al(CH3)3] is presented for the controlled etching of GaN, which reduces oxygen and carbon contamination while smoothing the surface. The ALE chemistry was first examined with density functional theory. A comparison between proposed thermal and plasma-driven reactions is made by implementing Natarajan-Elliott analysis, highlighting that the plasma process is a good candidate for GaN ALE. Saturation was experimentally confirmed for both ALE half-cycles at 150 and 300 °C, with etch rates of 0.31 ± 0.01 and 0.40 ± 0.02 nm/cycle, respectively. Analysis of the films post-ALE shows that the RMS roughness of the films decreases from 2.6 ± 0.1 to 1.9 ± 0.1 nm after 25 nm of etching at 300 °C, in agreement with a previously developed curvature-dependent smoothing model. Taken together, this ALE process enables accurate GaN thickness tuning, surface cleaning, and surface smoothing, allowing for further development of GaN devices.</p
- …