1,579 research outputs found

    Color bimodality: Implications for galaxy evolution

    Get PDF
    We use a sample of 69726 galaxies from the SDSS to study the variation of the bimodal color-magnitude (CM) distribution with environment. Dividing the galaxy population by environment (Sigma_5) and luminosity (-23<M_r<-17), the u-r color functions are modeled using double-Gaussian functions. This enables a deconvolution of the CM distributions into two populations: red and blue sequences. The changes with increasing environmental density can be separated into two effects: a large increase in the fraction of galaxies in the red distribution, and a small color shift in the CM relations of each distribution. The average color shifts are 0.05+-0.01 and 0.11+-0.02 for the red and blue distributions, respectively, over a factor of 100 in projected neighbor density. The red fraction varies between about 0% and 70% for low-luminosity galaxies and between about 50% and 90% for high-luminosity galaxies. This difference is also shown by the variation of the luminosity functions with environment. We demonstrate that the effects of environment and luminosity can be unified. A combined quantity, Sigma_mod = Sigma_5/Mpc^{-2} + L_r/L_{-20.2}, predicts the fraction of red galaxies, which may be related to the probability of transformation events. Our results are consistent with major interactions (mergers and/or harassment) causing galaxies to transform from the blue to the red distribution. We discuss this and other implications for galaxy evolution from earlier results and model the effect of slow transformations on the color functions.Comment: 14 pages, 8 figures, in AIP Conf. Proc., The New Cosmology, eds. R. E. Allen et al. (aka. The Mitchell Symposium), see http://proceedings.aip.org/proceedings/confproceed/743.jsp ; v2: replaced Figure 5 which was incomplete in original submissio

    Galaxy bimodality versus stellar mass and environment

    Get PDF
    We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body simulation: the Bower et al. (2006) and Croton et al. (2006) models that incorporate AGN feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.Comment: 19 pages, 17 figures; accepted by MNRAS, minor change

    Colors, magnitudes and velocity dispersions in early-type galaxies: Implications for galaxy ages and metallicities

    Get PDF
    We present an analysis of the color-magnitude-velocity dispersion relation for a sample of 39320 early-type galaxies within the Sloan Digital Sky Survey. We demonstrate that the color-magnitude relation is entirely a consequence of the fact that both the luminosities and colors of these galaxies are correlated with stellar velocity dispersions. Previous studies of the color-magnitude relation over a range of redshifts suggest that the luminosity of an early-type galaxy is an indicator of its metallicity, whereas residuals in color from the relation are indicators of the luminosity-weighted age of its stars. We show that this, when combined with our finding that velocity dispersion plays a crucial role, has a number of interesting implications. First, galaxies with large velocity dispersions tend to be older (i.e., they scatter redward of the color-magnitude relation). Similarly, galaxies with large dynamical mass estimates also tend to be older. In addition, at fixed luminosity, galaxies which are smaller, or have larger velocity dispersions, or are more massive, tend to be older. Second, models in which galaxies with the largest velocity dispersions are also the most metal poor are difficult to reconcile with our data. However, at fixed velocity dispersion, galaxies have a range of ages and metallicities: the older galaxies have smaller metallicities, and vice-versa. Finally, a plot of velocity dispersion versus luminosity can be used as an age indicator: lines of constant age run parallel to the correlation between velocity dispersion and luminosity.Comment: 12 pages, 9 figures. Accepted by A

    SDSS-RASS: Next Generation of Cluster-Finding Algorithms

    Get PDF
    We outline here the next generation of cluster-finding algorithms. We show how advances in Computer Science and Statistics have helped develop robust, fast algorithms for finding clusters of galaxies in large multi-dimensional astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically, this paper presents four new advances: (1) A new semi-parametric algorithm - nicknamed ``C4'' - for jointly finding clusters of galaxies in the SDSS and ROSAT All-Sky Survey databases; (2) The introduction of the False Discovery Rate into Astronomy; (3) The role of kernel shape in optimizing cluster detection; (4) A new determination of the X-ray Cluster Luminosity Function which has bearing on the existence of a ``deficit'' of high redshift, high luminosity clusters. This research is part of our ``Computational AstroStatistics'' collaboration (see Nichol et al. 2000) and the algorithms and techniques discussed herein will form part of the ``Virtual Observatory'' analysis toolkit.Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000, Garching, German

    Testing Cold Dark Matter Models At Moderate to High Redshift

    Full text link
    The COBE microwave background temperature fluctuations and the abundance of local rich clusters of galaxies provide the two most powerful constraints on cosmological models. When all variants of the standard cold dark matter (CDM) model are subject to the combined constraint, the power spectrum of any model is fixed to 10\sim 10% accuracy in both the shape and overall amplitude. These constrained models are not expected to differ dramatically in their local large-scale structure properties. However, their evolutionary histories differ, resulting in dramatic differences towards high redshift. We examine in detail six standardized, COBE and cluster normalized CDM models with respect to a large set of independent observations. The observations include correlation function of rich clusters of galaxies, galaxy power spectrum, evolution of rich cluster abundance, gravitational lensing by moderate -to-high redshift clusters, \lya forest, damped \lya systems, high redshift galaxies, reionization of the universe and future CMB experiments. It seems that each of the independent observations examined is or potentially is capable of distinguishing between at least some of the models. The combined power of several or all of these observations is tremendous. Thus, we appear to be on the verge of being able to make dramatic tests of all models in the near future using a rapidly growing set of observations, mostly at moderate to high redshift. Consistency or inconsistency between different observed phenomena on different scales and/or at different epochs with respect to the models will have profound implications for theory of growth of cosmic structure.Comment: ApJ in press (1998), 26 emulateapj page

    Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey

    Get PDF
    We present in this paper a detailed analysis of the effect of environment on the star formation activity of galaxies within the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We have used the Halpha emission line to derive the star formation rate (SFR) for each galaxy within a volume-limited sample of 8598 galaxies with 0.05 less than or equal to z less than or equal to 0.095 and M (r*) less than or equal to 20.45. We find that the SFR of galaxies is strongly correlated with the local ( projected) galaxy density, and thus we present here a density-SFR relation that is analogous to the density-morphology relation. The effect of density on the SFR of galaxies is seen in three ways. First, the overall distribution of SFRs is shifted to lower values in dense environments compared with the field population. Second, the effect is most noticeable for the strongly star-forming galaxies (Halpha EW &gt; 5 Angstrom) in the 75th percentile of the SFR distribution. Third, there is a break ( or characteristic density) in the density-SFR relation at a local galaxy density of similar to1 h(75)(-2) Mpc(-2). To understand this break further, we have studied the SFR of galaxies as a function of clustercentric radius from 17 clusters and groups objectively selected from the SDSS EDR data. The distribution of SFRs of cluster galaxies begins to change, compared with the field population, at a clustercentric radius of 3-4 virial radii (at the &gt;1sigma statistical significance), which is consistent with the characteristic break in density that we observe in the density-SFR relation. This effect with clustercentric radius is again most noticeable for the most strongly star-forming galaxies. Our tests suggest that the density-morphology relation alone is unlikely to explain the density-SFR relation we observe. For example, we have used the ( inverse) concentration index of SDSS galaxies to classify late-type galaxies and show that the distribution of the star-forming (EW Halpha &gt; 5Angstrom) late-type galaxies is different in dense regions ( within 2 virial radii) compared with similar galaxies in the field. However, at present, we are unable to make definitive statements about the independence of the density-morphology and density-SFR relation. We have tested our work against potential systematic uncertainties including stellar absorption, reddening, SDSS survey strategy, SDSS analysis pipelines, and aperture bias. Our observations are in qualitative agreement with recent simulations of hierarchical galaxy formation that predict a decrease in the SFR of galaxies within the virial radius. Our results are in agreement with recent 2dF Galaxy Redshift Survey results as well as consistent with previous observations of a decrease in the SFR of galaxies in the cores of distant clusters. Taken together, these works demonstrate that the decrease in SFR of galaxies in dense environments is a universal phenomenon over a wide range in density (from 0.08 to 10 h(75)(-2) Mpc(-2)) and redshift (out to z similar or equal to 0.5)
    corecore