69 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ импСдансной спСктроскопии для тСстирования ΡƒΠ²Π»Π°ΠΆΠ½Π΅Π½Π½Ρ‹Ρ… Π·Π΅Ρ€Π΅Π½ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹

    Get PDF
    The authors presented the results of a study of the electrical and dielectric characteristics of wetted wheat grains by measuring their complex electrical resistance (impedance Z) in a wide frequency range (from 1 Hz to 100 MHz). The results of electrical impedance measurements of grains with surface or volumetric moisture content under different experimental conditions can provide useful information on the properties of the biological tissues of grain crops. These results can also be used to develop a new type of impedance sensor for testing grain quality and moisture content. The authors used well-dried wheat grains and grains saturated with moisture and saline as objects of research. A major problem in grain impedance measurements is the selection of a suitable electrode material to be placed on the end surfaces of the samples. The electrodes must ensure reliable contact with the grain and have a minimum transient resistance. The end surfaces of the pressed samples were reinforced with a protective dielectric ring to prevent transverse deformation. These contacts provided a transition resistance between 1-2 ohms. The authors have identified processes of accumulation of electric charges near the surface of metal electrodes at low frequencies and on internal grain structures, leading to an increase in the dielectric permittivity and dissipation factor. The behavior of the active and reactive components of the impedance at higher frequencies is determined by dielectric relaxation processes. The obtained impedance spectra were compared with the spectra of the most suitable equivalent electrical circuits. The radio components of the circuits provide information about the basic mechanisms of alternating electric current flow through the complex inhomogeneous structure of the grain. The authors found that moistening the grain with saline water enhances the process of accumulation of electric charges and affects the dispersion of the real and imaginary components of the impedance.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования элСктричСских ΠΈ диэлСктричСских характСристик ΡƒΠ²Π»Π°ΠΆΠ½Ρ‘Π½Π½Ρ‹Ρ… Π·Ρ‘Ρ€Π΅Π½ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΈΡ… комплСксного элСктричСского сопротивлСния (импСданса Z) Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот (ΠΎΡ‚ 1 Π“Ρ† Π΄ΠΎ 100 ΠœΠ“Ρ†). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ элСктричСского импСданса Π·Π΅Ρ€Π½Π° с повСрхностным ΠΈΠ»ΠΈ ΠΎΠ±ΡŠΡ‘ΠΌΠ½Ρ‹ΠΌ содСрТаниСм Π²Π»Π°Π³ΠΈ Π² Ρ€Π°Π·Π½Ρ‹Ρ… условиях экспСримСнта ΠΌΠΎΠ³ΡƒΡ‚ Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ свойствах биологичСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π·Π΅Ρ€Π½ΠΎΠ²Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° импСдансных Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² для тСстирования качСства Π·Π΅Ρ€Π½Π° ΠΈ Π΅Π³ΠΎ влаТности. Π’ качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдований использовались Ρ…ΠΎΡ€ΠΎΡˆΠΎ Π²Ρ‹ΡΡƒΡˆΠ΅Π½Π½Ρ‹Π΅ Π·Ρ‘Ρ€Π½Π° ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ Π·Ρ‘Ρ€Π½Π°, насыщСнныС Π²Π»Π°Π³ΠΎΠΉ ΠΈ солСвым раствором. Π‘Π΅Ρ€ΡŒΡ‘Π·Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ ΠΏΡ€ΠΈ измСрСниях импСданса Π·Ρ‘Ρ€Π΅Π½ являСтся Π²Ρ‹Π±ΠΎΡ€ подходящСго ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° элСктродов, Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π½Π° Ρ‚ΠΎΡ€Ρ†Π΅Π²Ρ‹Π΅ повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ². Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ Π½Π°Π΄Ρ‘ΠΆΠ½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ с Π·Π΅Ρ€Π½ΠΎΠΌ ΠΈ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ сопротивлСниСм. Для ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Ρ‚ΠΎΡ€Ρ†Π΅Π²Ρ‹Π΅ повСрхности прСссованных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² укрСпляли Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΌ диэлСктричСским ΠΊΠΎΠ»ΡŒΡ†ΠΎΠΌ. Π’Π°ΠΊΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ обСспСчивали ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½ΠΎΠ΅ сопротивлСниС Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 1–2 Ом. Π’ области Π½ΠΈΠ·ΠΊΠΈΡ… частот выявлСны процСссы накоплСния элСктричСских зарядов Π²Π±Π»ΠΈΠ·ΠΈ повСрхности мСталличСских элСктродов ΠΈ Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… структурах Π·Π΅Ρ€Π½Π°, приводящиС ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ диэлСктричСской проницаСмости ΠΈ тангСнса ΡƒΠ³Π»Π° ΠΏΠΎΡ‚Π΅Ρ€ΡŒ. Π’ области Π±ΠΎΠ»Π΅Π΅ высоких частот ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ импСданса опрСдСляСтся процСссами диэлСктричСской рСлаксации. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ спСктры импСданса ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΈΡΡŒ со спСктрами Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ подходящих эквивалСнтных элСктричСских схСм, радиотСхничСскиС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ основныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ прохоТдСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ элСктричСского Ρ‚ΠΎΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΡƒΡŽ структуру Π·Π΅Ρ€Π½Π°. УстановлСно, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π»Π°ΠΆΠ½Π΅Π½ΠΈΠ΅ Π·Π΅Ρ€Π½Π° подсолСнной Π²ΠΎΠ΄ΠΎΠΉ усиливаСт процСсс накоплСния элСктричСских зарядов ΠΈ влияСт Π½Π° Π΄ΠΈΡΠΏΠ΅Ρ€ΡΠΈΡŽ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΌΠ½ΠΈΠΌΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ импСданса

    Facile Synthesis of Amine-Functionalized Eu3+-Doped La(OH)3 Nanophosphors for Bioimaging

    Get PDF
    Here, we report a straightforward synthesis process to produce colloidal Eu3+-activated nanophosphors (NPs) for use as bioimaging probes. In this procedure, poly(ethylene glycol) serves as a high-boiling point solvent allowing for nanoscale particle formation as well as a convenient medium for solvent exchange and subsequent surface modification. The La(OH)3:Eu3+ NPs produced by this process were ~3.5 nm in diameter as determined by transmission electron microscopy. The NP surface was coated with aminopropyltriethoxysilane to provide chemical functionality for attachment of biological ligands, improve chemical stability and prevent surface quenching of luminescent centers. Photoluminescence spectroscopy of the NPs displayed emission peaks at 597 and 615 nm (Ξ»ex = 280 nm). The red emission, due to 5D0 β†’ 7F1 and 5D0 β†’ 7F2 transitions, was linear with concentration as observed by imaging with a conventional bioimaging system. To demonstrate the feasibility of these NPs to serve as optical probes in biological applications, an in vitro experiment was performed with HeLa cells. NP emission was observed in the cells by fluorescence microscopy. In addition, the NPs displayed no cytotoxicity over the course of a 48-h MTT cell viability assay. These results suggest that La(OH)3:Eu3+ NPs possess the potential to serve as a luminescent bioimaging probe

    Inorganic Lanthanide Nanophosphors in Biotechnology

    No full text

    Competitive quenching fluorescence immunoassay for chlorophenols based on laser-induced fluorescence detection in microdroplets

    No full text
    8 pages, 7 figures, 1 table.-- PMID: 12530822 [PubMed].-- Available online Nov 2, 2002.An improved biomonitoring system for the analysis of 2,4,6-trichlorophenol (TCP) in urine samples has been developed. The principle of the biosensor device is the detection of laser-induced fluorescence (LIF) in single microdroplets by a homogeneous quenching fluorescence immunoassay (QFIA). The competitive immunoassay occurs in microdroplets (d = 58,4 ΞΌm) produced by a piezoelectric generator system with 10-ΞΌm-diameter orifice. A continuous Ar ion laser (488 nm) excites the fluorescent tracer; its fluorescence is detected by a spectrometer attached to a 512 Γ— 512 cooled, charge-coupled device camera. Fluorescence is quenched by specific binding of TCP polyclonal antibodies to the fluorescent tracer (hapten Aβˆ’fluorescein); the quenching effect is diminished by the presence of the analyte. Thus, an increase in the signal is produced in a positive dose-dependent manner when TCP is present in the sample. In 10 mM PBS buffer, the IC50 of the LIF-microdroplet QFIA is 0.45 ΞΌg L-1 reaching a LOD of 0.04 ΞΌg L-1. The QFIA with the same reagents performed in microtiter plate format achieved a LOD of 0.36 ΞΌg L-1 in buffer solution. Performance in human urine was similar to that observed in the buffer. A LOD of 1.6 ΞΌg L-1, with a dynamic range between 4 and 149.5 ΞΌg L-1 in urine, was obtained without any sample treatment other than dilution with the assay buffer. The detectability achieved is sufficient for occupational exposure risk assessment.This research was supported by the Superfund Basic Research Program from the National Institute of Environmental Health Sciences (Grant 5P42ES04699, NIH with funding provided by EPA), by the EC Program (Contract QLRT-2000-01670), and by the Spanish Government through CICYT (BIO2000-0351-P4-05). UCD is a NIEHS Environmental Health Center P30 ESO5707.Peer reviewe
    • …
    corecore