28 research outputs found

    Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    Get PDF
    Background: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.[br/] Methodology/Principal Findings: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production - nitrification and denitrification - and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. [br/] Conclusions/Significance: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence

    Impacts of elevated atmospheric CO2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community [+ Correction 1 p.]

    No full text
    Author Correction: In the original publication, third author’s name was incorrectly published as Ludwig Jardiller. The correct name should read as Ludwig Jardillier. https://doi.org/10.1007/s00027-018-0581-4Under higher atmospheric CO2 concentrations, increases in soil moisture and, hence in terrestrial-aquatic carbon transfer are probable. In a coupled terrestrial-aquatic experiment we examined the direct (e.g. through changes in the CO2 water concentration) and indirect (e.g. through changes in the quality and quantity of soil leachates) effects of elevated CO2 on a lake microbial community. The incubation of soils under elevated CO2 resulted in an increase in the volume of leachates and in both chromophoric dissolved organic matter (CDOM) absorption and fluorescence in leachate. When this leachate was added to lake water during a 3-day aquatic incubation, we observed negative direct effects of elevated CO2 on photosynthetic microorganism abundance and a positive, indirect effect on heterotrophic microbial community cell abundances. We also observed a strong, indirect impact on the functional structure of the community with higher metabolic capacities under elevated CO2 along with a significant direct effect on CDOM absorption. All of these changes point to a shift towards heterotrophic processes in the aquatic compartment under higher atmospheric CO2 concentrations

    Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: A trait-based approach

    No full text
    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO2+Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes. © 2016 Le Roux, Bouskill, Niboyet, Barthes, Dijkstra, Field, Hungate, Lerondelle, Pommier, Tang, Terada, Tourna and Poly

    Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning

    Get PDF
    Fire is a crucial event regulating the structure and functioning of many ecosystems.Yet few studies have focused on how fire affects taxonomic and functional diversi‐ties of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grasslandecosystem 9 months after an experimental fire at the Jasper Ridge Global ChangeExperiment site in California, USA. Fire altered soil microbial communities con ‐siderably, with community assembly process analysis showing that environmentalselection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreasedthe relative abundances of most functional genes associated with C degradationand N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equationmodeling, which showed that plants but not microbial communities were responsi‐ble for significantly higher soil respiration rates in burned sites. Together, our resultsdemonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics
    corecore