2 research outputs found

    PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels

    No full text
    I ndividual genomes contain millions of genetic variants. When considering which variants may be causative for a given rare genetic disease, applying filtering criteria (such as allele frequency, predicted variant consequence, familial segregation and mode of inheritance) decreases this number to hundreds of variants. However, such a number remains labor intensive for a diagnostic genetic testing laboratory to interpret as part of routine service for each patient or family. A list of genes with evidence of disease causation in the condition being assessed aids in prioritizing and ranking the variants. This prioritization decreases the number of candidates that laboratories or clinical geneticists must assess to identify the likely causative variants for clinical reporting. Established lists of genes with clear evidence of disease causation (referred to herein as virtual gene panels) are therefore a highly effective tool in variant prioritization.M. Caulfield was funded by the National Institute for Health Research (NIHR) as part of the portfolio of translational research of the NIHR Biomedical Research Center at Barts and The London School of Medicine and Dentistry. He is supported as an NIHR senior investigator, and this work was funded by the MRC eMedLab award. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health). The 100,000 Genomes Project is funded by the NIHR and NHSE. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructur

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report.

    No full text
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)
    corecore