753 research outputs found

    Implementation of an anisotropic damage material model for non-proportional loading

    Get PDF
    Anisotropic damage for non-proportional loading is incorporated in an implicit finite element code under the framework of continuum damage models, using two different methodologies. Simple simulations are carried out to check the performance of the models. The advantages and drawbacks of both methodologies are discussed briefly

    Medpor implant in cranioorbitomaxillary reconstruction: institutional experience and a review of the literature

    Get PDF
    ManuscriptAutologous materials remain the gold standard for complex skull base and craniofacial reconstruction, but they carry additional morbidity associated with the second harvest procedure and with prolonged operation time. These autologous materials also resorb in a way that is not predictable, rendering them less ideal in situations where cosmesis and function are of paramount importance to aid with primary healing of the intracranial wound. Medpor porous polyethylene implant is an alloplastic material with unique characteristics that make it an excellent alternative for cranioorbitomaxillary reconstruction. The porous nature of the implant permits the ingrowth of vascularized tissue eventually forming a highly stable complex resistant to infection and deformation. A total of 698 patients undergoing 719 procedures in which Medpor was implanted were reviewed. Two complications occurred that required removal of the implant. On the basis of our results, we believe that the Medpor implant is an excellent alternative to existing alloplastic materials with a low incidence of infection and excellent cosmetic and functional results

    Material Induced Anisotropic Damage

    Get PDF
    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based on LIAD. This work puts emphasis on the presence of MIAD in DP600 steel. Scanning Electron Microscopic (SEM) analysis was carried out on undeformed and deformed tensile specimens. The martensite morphology showed anisotropy in size and orientation. Consequently, significant MIAD was observed in the deformed tensile specimens. A through thickness shear failure is observed in the tensile specimen, which is pulled along the rolling direction (RD), whereas a dominant ductile fracture is observed when pulled perpendicular to RD. The Modified Lemaitre’s (ML) anisotropic damage model is improved to account for MIAD in a phenomenological manner. The MIAD parameters are determined from tensile tests carried out in 0o, 45o and 90o to the RD. The formability of DP600 is lower in the RD compared to that in 90o to the RD, due to the phenomenon of MIAD

    Validation of Modified Lemaitre's Anisotropic Damage Model with the Cross Die Drawing Test

    Get PDF
    Dual Phase (DP) steels are widely replacing the traditional forming steels in automotive industry. Advanced damage models are required to accurately predict the formability of DP steels. In this work, Lemaitre’s anisotropic damage model has been slightly modified for sheet metal forming applications and for strain rate dependent materials. The damage evolution law is adapted to take into account the strain rate dependency and negative triaxialities. The damage parameters for pre-production DP600 steel were determined. The modified damage models (isotropic and anisotropic) were validated using the cross die drawing test. The anisotropic damage model predicts the crack direction more accurately

    ^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4

    Get PDF
    51^{51}V NMR studies on CaV2O4 single crystals and 17^{17}O NMR studies on 17^{17}O-enriched powder samples are reported. The temperature dependences of the 17^{17}O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field 51^{51}V NMR signal was observed at low temperatures (f \approx 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys. Rev.

    Inhomogeneous magnetism in single crystalline Sr3_3CuIrO6+δ_{6+\delta}: Implications to phase-separation concepts

    Full text link
    The single crystalline form of an insulator, Sr3_3CuIrO6+δ_{6+\delta}, is shown to exhibit unexpectedly more than one magnetic transition (at 5 and 19 K) with spin-glass-like magnetic susceptibility behaviour. On the basis of this finding, viz., inhomogeneous magnetism in a chemically homogeneous material, we propose that the idea of "phase- separation" described for manganites [1] is more widespread in different ways. The observed experimental features enable us to make a comparison with the predictions of a recent toy model [2] on {\it magnetic} phase separation in an insulating environment.Comment: 4 pages, 4 figure

    Joule heating and current-induced domain wall motion

    Get PDF
    We investigate numerically and experimentally the Joule heating produced by current pulses and its contribution to current-induced domain wall (DW) motion in a (Ga,Mn)As ferromagnetic semiconductor. Different thermal coupling between tracks and substrates are explored. A direct contact leads to a logarithmic transient temperature rise and a stationary state determined by the substrate thickness. The introduction of a low thermal conducting (Ga,In)As interlayer produces an additional temperature rise whose time variation and magnitude are analyzed. Experimentally, the measured temperature rises present a good agreement with predictions over more than four orders of magnitude in time for values of the heat conductivity and of the heat capacity close to those reported in the literature. The Joule heating is shown to produce non-linearities in the domain wall velocity versus current density characteristics. A correction of Joule heating is proposed and permits the identification of the flow regimes from a comparison of domain-wall dynamics in tracks presenting different pinning characteristics.Fil: Curiale, Carlos Javier. Centre National de la Recherche Scientifique; Francia. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lemaître, A.. Centre National de la Recherche Scientifique; FranciaFil: Niazi, T.. Centre National de la Recherche Scientifique; FranciaFil: Faini, G.. Centre National de la Recherche Scientifique; FranciaFil: Jeudy, V.. No especifíca

    Implementation of an anisotropic damage material model using general second order damage tensor

    Get PDF
    Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the principal damage direction, with the assumption that the principal damage direction coincides with that of principal plastic strain direction. This assumption limits the applicability of the model to proportional loads. This research is an effort towards imple-menting an anisotropic damage model for non-proportional loads. The implementation of an anisotropic damage model in an implicit FEA code is presented. The model is based on the hypothesis of strain equivalence. A second order general damage tensor is used as an inter-nal variable to represent the damage at macro scale. Two simulations were carried out to check the implementation of the model; a single element orthogonal load change simulation and a rectangular cup deep drawing simulation. Promising simulation results are obtained at acceptable CPU costs

    Synthesis, Structure, and Ferromagnetism of a New Oxygen Defect Pyrochlore System Lu2V2O_{7-x} (x = 0.40-0.65)

    Full text link
    A new fcc oxygen defect pyrochlore structure system Lu2V2O_{7-x} with x = 0.40 to 0.65 was synthesized from the known fcc ferromagnetic semiconductor pyrochlore compound Lu2V2O7 which can be written as Lu2V2O6O' with two inequivalent oxygen sites O and O'. Rietveld x-ray diffraction refinements showed significant Lu-V antisite disorder for x >= 0.5. The lattice parameter versus x (including x = 0) shows a distinct maximum at x ~ 0.4. We propose that these observations can be explained if the oxygen defects are on the O' sublattice of the structure. The magnetic susceptibility versus temperature exhibits Curie-Weiss behavior above 150 K for all x, with a Curie constant C that increases with x as expected in an ionic model. However, the magnetization measurements also show that the (ferromagnetic) Weiss temperature theta and the ferromagnetic ordering temperature T_C both strongly decrease with increasing x instead of increasing as expected from C(x). The T_C decreases from 73 K for x = 0 to 21 K for x = 0.65. Furthermore, the saturation moment at a field of 5.5 T at 5 K is nearly independent of x, with the value expected for a fixed spin 1/2 per V. The latter three observations suggest that Lu2V2O_{7-x} may contain localized spin 1/2 vanadium moments in a metallic background that is induced by oxygen defect doping, instead of being a semiconductor as suggested by the C(x) dependence.Comment: 9 pages including 7 figures, 3 table
    corecore