2,974 research outputs found
Semiparametric Estimation of Heteroscedastic Binary Sample Selection Model
Binary choice sample selection models are widely used in applied economics with large cross-sectional data where heteroscedaticity is typically a serious concern. Existing parametric and semiparametric estimators for the binary selection equation and the outcome equation in such models suffer from serious drawbacks in the presence of heteroscedasticity of unknown form in the latent errors. In this paper we propose some new estimators to overcome these drawbacks under a symmetry condition, robust to both nonnormality and general heterscedasticity. The estimators are shown to be -consistent and asymptotically normal. We also indicate that our approaches may be extended to other important models.
Scheduling for Multi-Camera Surveillance in LTE Networks
Wireless surveillance in cellular networks has become increasingly important,
while commercial LTE surveillance cameras are also available nowadays.
Nevertheless, most scheduling algorithms in the literature are throughput,
fairness, or profit-based approaches, which are not suitable for wireless
surveillance. In this paper, therefore, we explore the resource allocation
problem for a multi-camera surveillance system in 3GPP Long Term Evolution
(LTE) uplink (UL) networks. We minimize the number of allocated resource blocks
(RBs) while guaranteeing the coverage requirement for surveillance systems in
LTE UL networks. Specifically, we formulate the Camera Set Resource Allocation
Problem (CSRAP) and prove that the problem is NP-Hard. We then propose an
Integer Linear Programming formulation for general cases to find the optimal
solution. Moreover, we present a baseline algorithm and devise an approximation
algorithm to solve the problem. Simulation results based on a real surveillance
map and synthetic datasets manifest that the number of allocated RBs can be
effectively reduced compared to the existing approach for LTE networks.Comment: 9 pages, 10 figure
Riemannian Acceleration with Preconditioning for symmetric eigenvalue problems
In this paper, we propose a Riemannian Acceleration with Preconditioning
(RAP) for symmetric eigenvalue problems, which is one of the most important
geodesically convex optimization problem on Riemannian manifold, and obtain the
acceleration. Firstly, the preconditioning for symmetric eigenvalue problems
from the Riemannian manifold viewpoint is discussed. In order to obtain the
local geodesic convexity, we develop the leading angle to measure the quality
of the preconditioner for symmetric eigenvalue problems. A new Riemannian
acceleration, called Locally Optimal Riemannian Accelerated Gradient (LORAG)
method, is proposed to overcome the local geodesic convexity for symmetric
eigenvalue problems. With similar techniques for RAGD and analysis of local
convex optimization in Euclidean space, we analyze the convergence of LORAG.
Incorporating the local geodesic convexity of symmetric eigenvalue problems
under preconditioning with the LORAG, we propose the Riemannian Acceleration
with Preconditioning (RAP) and prove its acceleration. Additionally, when the
Schwarz preconditioner, especially the overlapping or non-overlapping domain
decomposition method, is applied for elliptic eigenvalue problems, we also
obtain the rate of convergence as , where is a constant
independent of the mesh sizes and the eigenvalue gap,
, is
the parameter from the stable decomposition, and
are the smallest two eigenvalues of the elliptic operator. Numerical results
show the power of Riemannian acceleration and preconditioning.Comment: Due to the limit in abstract of arXiv, the abstract here is shorter
than in PD
Effects of jet-induced medium excitation in -hadron correlation in A+A collisions
Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is
developed for co-current and event-by-event simulations of jet transport and
jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions.
This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a
source term from the energy-momentum deposition by propagating jet shower
partons and provides real time update of the bulk medium evolution for
subsequent jet transport. Hadron spectra in -jet events of A+A
collisions at RHIC and LHC are calculated for the first time that include
hadrons from both the modified jet and j.i.m.e.. CoLBT-hydro describes well
experimental data at RHIC on the suppression of leading hadrons due to parton
energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The
onset of soft hadron enhancement occurs at a constant transverse momentum due
to the thermal nature of soft hadrons from j.i.m.e. which also have a
significantly broadened azimuthal distribution relative to the jet direction.
Soft hadrons in the direction are, on the other hand, depleted due to
a diffusion wake behind the jet.Comment: 4 pages, 4 figures in LaTeX, final version published in PL
Scale-Adaptive Group Optimization for Social Activity Planning
Studies have shown that each person is more inclined to enjoy a group
activity when 1) she is interested in the activity, and 2) many friends with
the same interest join it as well. Nevertheless, even with the interest and
social tightness information available in online social networks, nowadays many
social group activities still need to be coordinated manually. In this paper,
therefore, we first formulate a new problem, named Participant Selection for
Group Activity (PSGA), to decide the group size and select proper participants
so that the sum of personal interests and social tightness of the participants
in the group is maximized, while the activity cost is also carefully examined.
To solve the problem, we design a new randomized algorithm, named Budget-Aware
Randomized Group Selection (BARGS), to optimally allocate the computation
budgets for effective selection of the group size and participants, and we
prove that BARGS can acquire the solution with a guaranteed performance bound.
The proposed algorithm was implemented in Facebook, and experimental results
demonstrate that social groups generated by the proposed algorithm
significantly outperform the baseline solutions.Comment: 20 pages. arXiv admin note: substantial text overlap with
arXiv:1305.150
- …