17 research outputs found

    Spin characterization of systematics in CMB surveys- A comprehensive formalism

    Get PDF
    The CMB BB-mode polarisation signal -- both the primordial gravitational wave signature and the signal sourced by lensing -- is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different ``spin'', particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarisation signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterises signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarisation spectra -- the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarisation leakage but provides a complete elucidation of all leakage including polarisation mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterise the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarisation mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process.Comment: Minimal revisions - some additional references added, typos fixed, etc. 31 pages, 8 figures, 1 table. Accepted by MNRA

    Blind map level systematics cleaning: a quadratic estimator approach

    Get PDF
    From IOP Publishing via Jisc Publications RouterHistory: received 2021-01-25, accepted 2021-06-09, ppub 2021-07, epub 2021-07-09, open-access 2021-07-09Publication status: PublishedAbstract: We present the first detailed case study using quadratic estimators (QE) to diagnose and remove systematics present in observed Cosmic Microwave Background (CMB) maps. In this work we focus on the temperature to polarization leakage. We use an iterative QE analysis to remove systematics, in analogy to de-lensing, recovering the primordial B-mode signal and the systematic maps. We introduce a new Gaussian filtering scheme crucial to stable convergence of the iterative cleaning procedure and validate with comparisons to semi-analytical forecasts. We study the limitations of this method by examining its performance both on idealized simulations and on more realistic, non-ideal simulations, where we assume varying de-lensing efficiencies. Finally, we quantify the systematic cleaning efficiency by presenting a likelihood analysis on the tensor to scalar ratio, r, and demonstrate that the blind cleaning results in an un-biased measurement of r, reducing the systematic induced B-mode power by nearly two orders of magnitude

    Controlling systematics in ground-based CMB surveys with partial boresight rotation

    No full text
    Future CMB experiments will require exquisite control of systematics in order to constrain the BB-mode polarisation power spectrum. One class of systematics that requires careful study is instrumental systematics. The potential impact of such systematics is most readily understood by considering analysis pipelines based on pair differencing. In this case, any differential gain, pointing or beam ellipticity between the two detectors in a pair can result in intensity leakage into the BB-mode spectrum, which needs to be controlled to a high precision due to the much greater magnitude of the total intensity signal as compared to the BB-mode signal. One well known way to suppress such systematics is through careful design of the scan-strategy, in particular making use of any capability to rotate the instrument about its pointing (boresight) direction. Here, we show that the combination of specific choices of such partial boresight rotation angles with redundancies present in the scan strategy is a powerful approach for suppressing systematic effects. This mitigation can be performed in analysis in advance of map-making and, in contrast to other approaches (e.g. deprojection or filtering), results in no signal loss. We demonstrate our approach explicitly with time ordered data simulations relevant to next-generation ground-based CMB experiments, using deep and wide scan strategies appropriate for experiments based in Chile. These simulations show a reduction of multiple orders of magnitude in the spurious BB-mode signal arising from differential gain and differential pointing systematics.Comment: 6 figures. Updated to match published version with a few minor clarifications; the main change is a brief discussion of bandpass mismatc

    Blind Map Level Systematics Cleaning: A Quadratic Estimator Approach

    No full text
    We present the first detailed case study using quadratic estimators (QE) to diagnose and remove systematics present in observed Cosmic Microwave Background (CMB) maps. In this work we focus on the temperature to polarization leakage. We use an iterative QE analysis to remove systematics, in analogy to de-lensing, recovering the primordial B-mode signal and the systematic maps. We introduce a new Gaussian filtering scheme crucial to stable convergence of the iterative cleaning procedure and validate with comparisons to semi-analytical forecasts. We study the limitations of this method by examining its performance both on idealized simulations and on more realistic, non-ideal simulations, where we assume varying de-lensing efficiencies. Finally, we quantify the systematic cleaning efficiency by presenting a likelihood analysis on the tensor to scalar ratio, rr, and demonstrate that the blind cleaning results in an un-biased measurement of rr, reducing the systematic induced B-mode power by nearly two orders of magnitude.Comment: 30 pages, 12 figures, prepared for submission to JCA
    corecore