6,150 research outputs found

    Measuring the world city network: new results and developments

    Get PDF

    Enabling Ultra-Reliable and Low-Latency Communications through Unlicensed Spectrum

    Full text link
    © 2018 IEEE. In this article, we aim to address the question of how to exploit the unlicensed spectrum to achieve URLLC. Potential URLLC PHY mechanisms are reviewed and then compared via simulations to demonstrate their potential benefits to URLLC. Although a number of important PHY techniques help with URLLC, the PHY layer exhibits an intrinsic trade-off between latency and reliability, posed by limited and unstable wireless channels. We then explore MAC mechanisms and discuss multi-channel strategies for achieving low-latency LTE unlicensed band access. We demonstrate, via simulations, that the periods without access to the unlicensed band can be substantially reduced by maintaining channel access processes on multiple unlicensed channels, choosing the channels intelligently, and implementing RTS/CTS

    Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors

    Get PDF
    Polycrystalline perovskites can be readily fabricated into large areas using solution depositions; however, they suffer from large dark currents that are tens to hundreds times higher than industrially relevant values, limiting their application in low-dose x-ray detection. Here, we show that the application of a heterojunction structure into polycrystalline films significantly reduces the dark current density by more than 200 times to subnanoampere per square centimeter without reducing the sensitivity of the detectors. The heterojunction perovskite films are formed by laminating several membrane films filled with perovskites of different bandgaps. A gradient bandgap is formed during annealing. The detectors have a lowest detectable dose rate of 13.8 ± 0.29 nGyair s-1 for 40-keV x-ray and can conduct dynamic x-ray imaging at a low-dose rate of 32.2 nGyair s-1. Simulation and experimental analysis show that the heterojunction is tolerant of halide diffusion and can be stable for over 15 years

    Surface energy engineering of graphene

    Full text link
    Contact angle goniometry is conducted for epitaxial graphene on SiC. Although only a single layer of epitaxial graphene exists on SiC, the contact angle drastically changes from 69{\deg} on SiC substrates to 92{\deg} with graphene. It is found that there is no thickness dependence of the contact angle from the measurements of single, bi, and multi layer graphene and highly ordered pyrolytic graphite (HOPG). After graphene is treated with oxygen plasma, the level of damage is investigated by Raman spectroscopy and correlation between the level of disorder and wettability is reported. By using low power oxygen plasma treatment, the wettability of graphene is improved without additional damage, which can solve the adhesion issues involved in the fabrication of graphene devices

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements
    corecore