6 research outputs found

    Modeling of parallel power MOSFETs in steady-state

    Full text link
    In high-power applications, multiple power MOSFETs are connected in parallel and treated as a single switch in order to handle much larger total currents. In this paper, a parallel power MOSFETs model from the turnoff state until they reach their steady state is introduced. The model represents the relationship between each power MOSFET's gate voltage and the current distribution among them. The study's key purpose is to use the model for dealing with the asymmetry in sharing current and power loss between these semiconductor devices during the steady state region.Comment: 10 pages, 7 figures, The 2023 INTERNATIONAL SYMPOSIUM ON ADVANCED ENGINEERING (ISAE2023

    ARSENIC POLLUTION IN TUBE WELL WATER AT HANOI SUBURB VILLAGES

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval

    Full text link
    3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.Comment: arXiv admin note: text overlap with arXiv:2304.0573

    Factors Determining the Removal Efficiency of Procion MX in Waters Using Titanate Nanotubes Catalyzed by UV Irradiation

    No full text
    The treatment of wastewater from the textile industry containing organic dyes faces many challenges since these compounds resist the biodegradation process in conventional treatment units. Among the physicochemical processes, photocatalysis is considered a facile, cheap, and environmental-friendly technology for treating persistent organic pollutants in waters at low concentrations. This study investigated several physicochemical factors determining the photocatalytic activity of titanate nanotubes (TNTs) to remove Procion MX 032 (PMX), an azo dye, in waters. Degradation of PMX by photocatalytic oxidation process at room temperature (30°C) was set up with the UV irradiation in the presence of different types of photocatalyst such as ST-01 (100% anatase), industrial TiO2, TNTs calcined at 120°C and 500°C. Effect of reaction time, catalyst amount, pH, light wavelength and intensity, and oxidants was investigated. Consequently, TNTs calcined at 500°C provided the highest removal efficiency. The photocatalytic oxidation of PMX by TNT calcined at 500°C was affected by pH variation, getting the highest removal at pH of 8, and inhibited with the presence of H2O2 and O2. Particularly, the PMX degradation using titanate nanotubes was optimized under the UV-A intensity of 100 W/m2. The dye was degraded by more than 95% at the TNTs concentration of 75 mg/L and pH 8.0 after 90 min. The results suggest that photocatalysis using TNTs can be a simple but efficient treatment method to remove PMX and potentially be applied for the treatment of wastewaters containing dyes

    SHREC 2022: Fitting and recognition of simple geometric primitives on point clouds

    Full text link
    This paper presents the methods that have participated in the SHREC 2022 track on the fitting and recognition of simple geometric primitives on point clouds. As simple primitives we mean the classical surface primitives derived from constructive solid geometry, i.e., planes, spheres, cylinders, cones and tori. The aim of the track is to evaluate the quality of automatic algorithms for fitting and recognising geometric primitives on point clouds. Specifically, the goal is to identify, for each point cloud, its primitive type and some geometric descriptors. For this purpose, we created a synthetic dataset, divided into a training set and a test set, containing segments perturbed with different kinds of point cloud artifacts. Among the six participants to this track, two are based on direct methods, while four are either fully based on deep learning or combine direct and neural approaches. The performance of the methods is evaluated using various classification and approximation measures

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore