25,335 research outputs found

    Analysis of glycolipids in vegetable lecithin with HPLC-ELSD

    Get PDF
    Vegetable lecithins play an important role in the microstructural and macroscopic properties of food and cosmetic products. They are widely used as a natural emulsifier. As lecithin is a by-product of the vegetable oil refining industry, its composition is quite variable and rather complex. Therefore, a more complete view on the chemical composition of lecithin would assist in elucidating its functionality. This study focused on the separation and quantification of several glycolipid classes in lecithin, namely (1) digalactosyldiacylglycerol (DGDG) and monogalactosyldiacylglycerol (MGDG), (2) steryl glucosides, (3) esterified steryl glucosides and (4) cerebrosides, using HPLC-ELSD. MGDG was not detected in soy lecithin

    Efficient and accurate calculation of exact exchange and RPA correlation energies in the Adiabatic-Connection Fluctuation-Dissipation theory

    Full text link
    Recently there has been a renewed interest in the calculation of exact-exchange and RPA correlation energies for realistic systems. These quantities are main ingredients of the so-called EXX/RPA+ scheme which has been shown to be a promising alternative approach to the standard LDA/GGA DFT for weakly bound systems where LDA and GGA perform poorly. In this paper, we present an efficient approach to compute the RPA correlation energy in the framework of the Adiabatic-Connection Fluctuation-Dissipation formalism. The method is based on the calculation of a relatively small number of eigenmodes of RPA dielectric matrix, efficiently computed by iterative density response calculations in the framework of Density Functional Perturbation Theory. We will also discuss a careful treatment of the integrable divergence in the exact-exchange energy calculation which alleviates the problem of its slow convergence with respect to Brillouin zone sampling. As an illustration of the method, we show the results of applications to bulk Si, Be dimer and atomic systems.Comment: 12 pages, 6 figures. To appear in Phys. Rev.

    Trichinellosis in Vietnam

    Get PDF
    Trichinellosis is a zoonotic parasitic disease with a worldwide distribution. The aim of this work was to describe the epidemiological and clinical data of five outbreaks of trichinellosis, which affected ethnic minorities living in remote mountainous areas of northwestern Vietnam from 1970 to 2012. Trichinellosis was diagnosed in 126 patients, of which 11 (8.7%) were hospitalized and 8 (6.3%) died. All infected people had consumed raw pork from backyard and roaming pigs or wild boar at wedding, funeral, or New Year parties. The short incubation period (average of 9.5 days), the severity of the symptoms, which were characterized by diarrhea, abdominal pain, fever, myalgia, edema, weight loss, itch, and lisping, and the high mortality, suggest that patients had ingested a high number of larvae. The larval burden in pigs examined in one of the outbreaks ranged from 70 to 879 larvae/g. These larvae and those collected from a muscle biopsy taken from a patient from the 2012 outbreak were identified as Trichinella spiralis. Data presented in this work show that the northern regions of Vietnam are endemic areas for Trichinella infections in domestic pigs and humans

    Investigating and implementing a student vocational education model for educational innovation

    Get PDF
    The development of each student's awareness serves as the governing principle for high school vocational education programs. This awareness then becomes the driving force behind the progression of the educational process. Career education activities for students are the relationships between the objectives, contents, methods and forms of organization of educational activities that are directly and constantly influenced by the educational environment. Student career education activities are the relationships between these aspects of educational activities as determined by research into the programs, textbooks, systematization and theoretical analysis of these activities. This investigation focuses on the following areas: (1) Developing preschool and high school teachers in the province of Dong Thap to meet the criteria of the new educational program (2) Developing models of applying local educational material for students in the province of Dong Thap. Both of these initiatives are part of the Dong Thap Educational Development Project. Findings: Assess the current state of activities for students in the province of Dong Thap that are related to vocational education between 2018- 2021. Develop a model for carrying out activities for students participating in vocational education in the province of Dong Thap to fulfill educational innovation requirements

    Towards spectral-domain optical coherence tomography on a silicon chip

    Get PDF
    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these instruments bulky and costly. A significant decrease in the size and cost of an OCT system is possible through the use of integrated optics, allowing for compact and low-cost OCT systems, especially suited for applications in which instrument size may play an important role. In this work, we present a miniaturized spectral-domain OCT (SD-OCT) system. We design an arrayed waveguide grating (AWG) spectrometer in silicon oxynitride for the 1300-nm spectral range. The spectral range of the SD-OCT system near 1300 nm is specifically selected for skin imaging. We aim at 18-μm depth resolution (determined by the full width at half maximum values of the transmission spectrum of the AWG) and a 1-mm depth range (determined by the wavelength spacing per output waveguide). The free spectral range of 78 nm and wavelength resolution of 0.4 nm of the AWG are determined to meet these requirements. We use ahe fiber-based SD-OCT system with AWG spectrometer. The Michelson interferometer is illuminated using a superluminescent diode which has a Gaussian-like spectrum with a bandwidth of 40 nm and a central wavelength of 1300 nm. Via a circulator the light is coupled into a 90/10 beamsplitter. Polarization controllers are placed into both, sample and reference arm. The backreflected light is redirected through the optical circulator to the AWG spectrometer. The collimated beam is imaged with a camera lens onto a 46 kHz CCD linescan camera. The acquired spectra are processed by first subtracting the reference arm spectrum, then compensating the dispersion, and finally resampling to k-space. We achieve a depth range of 1mm. The measured signal-to-noise ratio (SNR) is 75 dB. The axial resolution (FWHM) is determined from a Gaussian fit to the point spread function in amplitude at various depths. A slight decrease in depth resolution is observed at higher depth ranges, which we attribute to misalignment and lens aberrations. As a demonstration of OCT imaging using the AWG spectrometer, an image of a layered phantom is recorded. The phantom consists of three layers of scattering medium (µs = 4 mm-1, refractive index n = 1.41) interleaved with non-scattering tape. We can observe all three scattering layers up to the maximum imaging depth of 1 mm

    Collective excitations in the inner crust of neutron stars : supergiant resonances

    Full text link
    We investigate the nuclear collective excitations of Wigner-Seitz cells containing nuclear clusters immersed in a gas of neutrons. This baryonic non-uniform system is specific to the structure of inner crust matter of neutron stars. The collective excitations are studied in the framework of a spherical Hartree-Fock-Bogoliubov + Quasiparticle Random Phase Approximation, formulated in coordinate representation. The calculations are done for two representative Wigner-Seitz cells with baryonic density equal to 0.02 fm3^{-3} and 0.08 fm3^{-3}. It is shown that the excitations with low multipolarities are concentrated almost entirely in one strongly collective mode which exhausts a very large fraction of the energy-weighted sum rule. Since these collective modes are located at very low energies compared to the giant resonances in standard nuclei, they may affect significantly the specific heat of baryonic inner crust matter of neutron stars.Comment: 6 pages, 4 figure
    corecore