12,762 research outputs found

    Spatio-temporal environmental monitoring for smart buildings

    Full text link
    © 2017 IEEE. The paper addresses the problem of efficiently monitoring environmental fields in a smart building by the use of a network of wireless noisy sensors that take discretely-predefined measurements at their locations through time. It is proposed that the indoor environmental fields are statistically modeled by spatio-temporal non-parametric Gaussian processes. The proposed models are able to effectively predict and estimate the indoor climate parameters at any time and at any locations of interest, which can be utilized to create timely maps of indoor environments. More importantly, the monitoring results are practically crucial for building management systems to efficiently control energy consumption and maximally improve human comfort in the building. The proposed approach was implemented in a real tested space in a university building, where the obtained results are highly promising

    Efficient spatio-temporal sensor deployments: A smart building application

    Full text link
    © 2017 IEEE. The paper addresses the problem of efficiently deploying sensors in spatial environments, e.g. smart buildings, for the purpose of monitoring environmental phenomena. By modelling the environmental fields using spatio-temporal Gaussian processes, a new and efficient optimality criterion of minimizing prediction uncertainties is proposed to find the best sensor locations. Though the environmental processes spatially and temporally vary, the proposed approach of choosing sensor positions is not affected by time variations, which significantly reduces computational complexity of the optimization problem. The sensor deployment problem is then solved by a practically and feasibly polynomial algorithm, where its solutions are guaranteed. The proposed approaches were implemented in a real tested space in a university building, where the obtained results are highly promising

    Presurgical CT Evaluation of Congenital Aural Atresia

    Get PDF
    Congenital aural atresia occurs in approximately 1 in 10,000‐20,000 births and may be surgically repaired if the middle ear malformation is limited in character. External auditory canal atresia is difficult to repair surgically, with significant risks and complications. Surgical candidacy in congenital aural atresia is based on multiple factors, central to which are the anatomy of the temporal bone and audiometric findings. High-resolution multidetector CT is the imaging technique of choice for anatomy delineation, although there are some specific indications for MR imaging in presurgical assessment. Various CT grading systems have been developed to determine surgical candidacy and are described in this review. The radiologist\u27s understanding and precise evaluation of important anatomic structures is critical in the assessment of surgical candidacy. This review serves to familiarize the radiologist with various abnormalities seen in congenital aural atresia.Learning Objectives: Recognize important CT-based classification systems used to determine surgical candidacy and contraindications to surgery for external auditory canal atresia repair, recognize the embryologic origin, and assess the EAC and ossicles in congenital aural atresia

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    #Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds

    Full text link
    Compounding of natural language units is a very common phenomena. In this paper, we show, for the first time, that Twitter hashtags which, could be considered as correlates of such linguistic units, undergo compounding. We identify reasons for this compounding and propose a prediction model that can identify with 77.07% accuracy if a pair of hashtags compounding in the near future (i.e., 2 months after compounding) shall become popular. At longer times T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This technique has strong implications to trending hashtag recommendation since newly formed hashtag compounds can be recommended early, even before the compounding has taken place. Further, humans can predict compounds with an overall accuracy of only 48.7% (treated as baseline). Notably, while humans can discriminate the relatively easier cases, the automatic framework is successful in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2016

    IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design

    Get PDF
    Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here we show that some humanised heavy chains can fold, form dimers and be secreted even in the absence of light chain. Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the heavy chain CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the light chain CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent upon the heavy chain variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will impact on the efficient production of both humanised antibodies as well as the design of novel antibody formats

    Evaporation of the pancake-vortex lattice in weakly-coupled layered superconductors

    Full text link
    We calculate the melting line of the pancake-vortex system in a layered superconductor, interpolating between two-dimensional (2D) melting at high fields and the zero-field limit of single-stack evaporation. Long-range interactions between pancake vortices in different layers permit a mean-field approach, the ``substrate model'', where each 2D crystal fluctuates in a substrate potential due to the vortices in other layers. We find the thermal stability limit of the 3D solid, and compare the free energy to a 2D liquid to determine the first-order melting transition and its jump in entropy.Comment: 4 pages, RevTeX, two postscript figures incorporated using eps

    Numerical studies of the phase diagram of layered type II superconductors in a magnetic field

    Full text link
    We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework of the lowest Landau level approximation. We find a first order phase transition with a B(T)B(T) dependence which agrees very well with the experimental ``melting'' line in YBaCuO. The transition is not associated with vortex lattice melting, but separates two vortex liquid states characterised by different degrees of short-range crystalline order and different length scales of correlations between vortices in different layers. The transition line ends at a critical end-point at low fields. We find the magnetization discontinuity and the location of the lower critical magnetic field to be in good agreement with experiments in YBaCuO. Length scales of order parameter correlations parallel and perpendicular to the magnetic field increase exponentially as 1/T at low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation lengths. We find that the first order phase transition persists in the presence of weak random point disorder but can be suppressed entirely by strong disorder. No vortex glass or Bragg glass state is found in the presence of disorder. The consistency of our numerical results with various experimental features in YBaCuO, including the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg peaks in neutron scattering experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR
    corecore