34,771 research outputs found

    Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation

    Full text link
    The phase diagram of a water solution of DNA and oppositely charged spherical macroions is studied. DNA winds around spheres to form beads-on-a-string complexes resembling the chromatin 10 nm fiber. At small enough concentration of spheres these "artificial chromatin" complexes are negative, while at large enough concentrations of spheres the charge of DNA is inverted by the adsorbed spheres. Charges of complexes stabilize their solutions. In the plane of concentrations of DNA and spheres the phases with positive and negative complexes are separated by another phase, which contains the condensate of neutral DNA-spheres complexes. Thus when the concentration of spheres grows, DNA-spheres complexes experience condensation and resolubilization (or reentrant condensation). Phenomenological theory of the phase diagram of reentrant condensation and charge inversion is suggested. Parameters of this theory are calculated by microscopic theory. It is shown that an important part of the effect of a monovalent salt on the phase diagram can be described by the nontrivial renormalization of the effective linear charge density of DNA wound around a sphere, due to the Onsager-Manning condensation. We argue that our phenomenological phase diagram or reentrant condensation is generic to a large class of strongly asymmetric electrolytes. Possible implication of these results for the natural chromatin are discussed.Comment: Many corrections to text. SUbmitted to J. Chem. Phy

    Reentrant Condensation of DNA induced by Multivalent Counterions

    Full text link
    A theory of condensation and resolubilization of a dilute DNA solution with growing concentration of multivalent cations, N is suggested. It is based on a new theory of screening of a macroion by multivalent cations, which shows that due to strong cation correlations at the surface of DNA the net charge of DNA changes sign at some small concentration of cations N_0. DNA condensation takes place in the vicinity of N_0, where absolute value of the DNA net charge is small and the correlation induced short range attraction dominates the Coulomb repulsion. At N > N_0 positive DNA should move in the oppisite direction in an electrophoresis experiment. From comparison of our theory with experimental values of condensation and resolubilization thresholds for DNA solution containing Spe4+^{4+}, we obtain that N_0 = 3.2 mM and that the energy of DNA condensation per nucleotide is 0.07kBT0.07 k_B T.Comment: 8 pages, 4 figures, references correcte

    Five areas to advance branding theory and practice

    Get PDF
    The paper suggests five areas to advance branding theory and practice based on the authors’ recent work in brand management. In this commentary, we aim to put forward suggestions and ideas for further research in brand management; ideas, which we believe will have an impact on the way branding is researched and practiced by both academics and practitioners alike. We will focus on the future of branding in the following areas, inspired by our own work in the field: (1) branding in higher education, (2) branding in Asia Pacific, (3) brand ambidexterity, (4) brand innovation on social media, and (5) brand likeability

    Slice-level Detection of Intracranial Hemorrhage on CT Using Deep Descriptors of Adjacent Slices

    Full text link
    The rapid development in representation learning techniques such as deep neural networks and the availability of large-scale, well-annotated medical imaging datasets have to a rapid increase in the use of supervised machine learning in the 3D medical image analysis and diagnosis. In particular, deep convolutional neural networks (D-CNNs) have been key players and were adopted by the medical imaging community to assist clinicians and medical experts in disease diagnosis and treatment. However, training and inferencing deep neural networks such as D-CNN on high-resolution 3D volumes of Computed Tomography (CT) scans for diagnostic tasks pose formidable computational challenges. This challenge raises the need of developing deep learning-based approaches that are robust in learning representations in 2D images, instead 3D scans. In this work, we propose for the first time a new strategy to train \emph{slice-level} classifiers on CT scans based on the descriptors of the adjacent slices along the axis. In particular, each of which is extracted through a convolutional neural network (CNN). This method is applicable to CT datasets with per-slice labels such as the RSNA Intracranial Hemorrhage (ICH) dataset, which aims to predict the presence of ICH and classify it into 5 different sub-types. We obtain a single model in the top 4% best-performing solutions of the RSNA ICH challenge, where model ensembles are allowed. Experiments also show that the proposed method significantly outperforms the baseline model on CQ500. The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging. To encourage new advances in the field, we will make our codes and pre-trained model available upon acceptance of the paper.Comment: Accepted for presentation at the 22nd IEEE Statistical Signal Processing (SSP) worksho

    Bringing Students Back to Mathematics: Classroom Knowledge and Motivation

    Get PDF
    This paper reports part of a larger research study that investigated how teachers motivate students to learn mathematics at the college level. Findings from the study indicated that teachers have the power to influence and reinvigorate students who had given up learning mathematics. In the framework of Self-Determination Theory (SDT), the researchers analyzed five students’ motivational levels based on intrinsic and extrinsic motivation to see how each student was motivated by their teacher. Findings from the study could provide some directions for future research on students’ motivation to learn mathematics
    • …
    corecore