4,940 research outputs found

    Modelling of dishing for metal chemical mechanical polishing

    Get PDF
    In this paper, a physical model for the development of dishing during metal chemical mechanical polishing (CMP) is proposed. The main assumption of the model is that material removal occurs predominantly at the pad/wafer contacts. The distribution of pad/wafer contact size is studied first. This distribution is used as an input for a model of the dependence for the material removal rate on the line width. A relation that describes the development of dishing as a function of overpolish time will be presented. The model describes to a great accuracy the observed dishing effects, using one free paramete

    Controlling colloidal phase transitions with critical Casimir forces

    Full text link
    The critical Casimir effect provides a thermodynamic analogue of the well-known quantum mechanical Casimir effect. It acts between two surfaces immersed in a critical binary liquid mixture, and results from the confinement of concentration fluctuations of the solvent. Unlike the quantum mechanical effect, the magnitude and range of this attraction can be adjusted with temperature via the solvent correlation length, thus offering new opportunities for the assembly of nano and micron-scale structures. Here, we demonstrate the active assembly control of equilibrium phases using critical Casimir forces. We guide colloidal particles into analogues of molecular liquid and solid phases via exquisite control over their interactions. By measuring the critical Casimir particle pair potential directly from density fluctuations in the colloidal gas, we obtain insight into liquefaction at small scales: We apply the Van der Waals model of molecular liquefaction and show that the colloidal gas-liquid condensation is accurately described by the Van der Waals theory, even on the scale of a few particles. These results open up new possibilities in the active assembly control of micro and nanostructures

    A general theory of coexistence and extinction for stochastic ecological communities

    Full text link
    We analyze a general theory for coexistence and extinction of ecological communities that are influenced by stochastic temporal environmental fluctuations. The results apply to discrete time (stochastic difference equations), continuous time (stochastic differential equations), compact and non-compact state spaces and degenerate or non-degenerate noise. In addition, we can also include in the dynamics auxiliary variables that model environmental fluctuations, population structure, eco-environmental feedbacks or other internal or external factors. We are able to significantly generalize the recent discrete time results by Benaim and Schreiber (Journal of Mathematical Biology '19) to non-compact state spaces, and we provide stronger persistence and extinction results. The continuous time results by Hening and Nguyen (Annals of Applied Probability '18) are strengthened to include degenerate noise and auxiliary variables. Using the general theory, we work out several examples. In discrete time, we classify the dynamics when there are one or two species, and look at the Ricker model, Log-normally distributed offspring models, lottery models, discrete Lotka-Volterra models as well as models of perennial and annual organisms. For the continuous time setting we explore models with a resource variable, stochastic replicator models, and three dimensional Lotka-Volterra models.Comment: 65 pages, 3 figure

    Nuclear halo structure and pseudo-spin symmetry

    Full text link
    Nuclear halo structure and restoration of relativistic symmetry are studied within the framework of the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. Giant halos as well as ordinary ones are found in Cerium isotopes close to the neutron drip line. Bridged by T=0 {channel}, the restoration of pseudo-spin symmetry (PSS) plays an essential role in stabilizing the neutron halo structures. The Fock terms, especially the ρ\rho-tensor couplings, not only play significant role in the PSS restoration but also present substantial contributions to the T=0 {channel}, from which is well demonstrated the necessity of Fock terms.Comment: 5pages, 4figures, 1tabl

    Communication Subsystems for Satellite Design

    Get PDF
    The objective of this chapter is to provide a comprehensive end-to-end overview of existing communication subsystems residing on both the satellite bus and payloads. These subsystems include command and mission data handling, telemetry and tracking, and the antenna payloads for both command, telemetry and mission data. The function of each subsystem and the relationships to the others will be described in detail. In addition, the recent application of software defined radio (SDR) to advanced satellite communication system design will be looked at with applications to satellite development, and the impacts on how SDR will affect future satellite missions are briefly discussed

    On the Frequency Dependency of Radio Channel's Delay Spread: Analyses and Findings From mmMAGIC Multi-frequency Channel Sounding

    Full text link
    This paper analyzes the frequency dependency of the radio propagation channel's root mean square (rms) delay spread (DS), based on the multi-frequency measurement campaigns in the mmMAGIC project. The campaigns cover indoor, outdoor, and outdoor-to-indoor (O2I) scenarios and a wide frequency range from 2 to 86 GHz. Several requirements have been identified that define the parameters which need to be aligned in order to make a reasonable comparison among the different channel sounders employed for this study. A new modelling approach enabling the evaluation of the statistical significance of the model parameters from different measurements and the establishment of a unified model is proposed. After careful analysis, the conclusion is that any frequency trend of the DS is small considering its confidence intervals. There is statistically significant difference from the 3GPP New Radio (NR) model TR 38.901, except for the O2I scenario.Comment: This paper has been accepted to the 2018 12th European Conference on Antennas and Propagation (EuCAP), London, UK, April 201

    Using Joint Utilities of the Times to Response and Toxicity to Adaptively Optimize Schedule–Dose Regimes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/1/biom12065-sm-0001-SuppData.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101836/2/biom12065.pd

    Ten Simple Rules for Reproducible Research in Jupyter Notebooks

    Full text link
    Reproducibility of computational studies is a hallmark of scientific methodology. It enables researchers to build with confidence on the methods and findings of others, reuse and extend computational pipelines, and thereby drive scientific progress. Since many experimental studies rely on computational analyses, biologists need guidance on how to set up and document reproducible data analyses or simulations. In this paper, we address several questions about reproducibility. For example, what are the technical and non-technical barriers to reproducible computational studies? What opportunities and challenges do computational notebooks offer to overcome some of these barriers? What tools are available and how can they be used effectively? We have developed a set of rules to serve as a guide to scientists with a specific focus on computational notebook systems, such as Jupyter Notebooks, which have become a tool of choice for many applications. Notebooks combine detailed workflows with narrative text and visualization of results. Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses
    corecore