2,678 research outputs found
Researchers who lead the trends
Xuan-Hung Doan, Phuong-Tram T. Nguyen, Viet-Phuong La, Hong-Kong T. Nguyen (2019). Chapter 5. Researchers who lead the trends. In Quan-Hoang Vuong, Trung Tran (Eds.), The Vietnamese Social Sciences at a Fork in the Road (pp. 98–120). Warsaw, Poland: De Gruyter. DOI:10.2478/9783110686081-010
Online ISBN: 9783110686081
© 2019 Sciend
Outward Influence and Cascade Size Estimation in Billion-scale Networks
Estimating cascade size and nodes' influence is a fundamental task in social,
technological, and biological networks. Yet this task is extremely challenging
due to the sheer size and the structural heterogeneity of networks. We
investigate a new influence measure, termed outward influence (OI), defined as
the (expected) number of nodes that a subset of nodes will activate,
excluding the nodes in S. Thus, OI equals, the de facto standard measure,
influence spread of S minus |S|. OI is not only more informative for nodes with
small influence, but also, critical in designing new effective sampling and
statistical estimation methods.
Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence
spread/outward influence at scale and with rigorous theoretical guarantees. The
proposed methods are built on two novel components 1) IICP an important
sampling method for outward influence, and 2) RSA, a robust mean estimation
method that minimize the number of samples through analyzing variance and range
of random variables. Compared to the state-of-the art for influence estimation,
SIEA is times faster in theory and up to several orders of
magnitude faster in practice. For the first time, influence of nodes in the
networks of billions of edges can be estimated with high accuracy within a few
minutes. Our comprehensive experiments on real-world networks also give
evidence against the popular practice of using a fixed number, e.g. 10K or 20K,
of samples to compute the "ground truth" for influence spread.Comment: 16 pages, SIGMETRICS 201
Importance Sketching of Influence Dynamics in Billion-scale Networks
The blooming availability of traces for social, biological, and communication
networks opens up unprecedented opportunities in analyzing diffusion processes
in networks. However, the sheer sizes of the nowadays networks raise serious
challenges in computational efficiency and scalability.
In this paper, we propose a new hyper-graph sketching framework for inflence
dynamics in networks. The central of our sketching framework, called SKIS, is
an efficient importance sampling algorithm that returns only non-singular
reverse cascades in the network. Comparing to previously developed sketches
like RIS and SKIM, our sketch significantly enhances estimation quality while
substantially reducing processing time and memory-footprint. Further, we
present general strategies of using SKIS to enhance existing algorithms for
influence estimation and influence maximization which are motivated by
practical applications like viral marketing. Using SKIS, we design high-quality
influence oracle for seed sets with average estimation error up to 10x times
smaller than those using RIS and 6x times smaller than SKIM. In addition, our
influence maximization using SKIS substantially improves the quality of
solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x
memory reduction for the fastest RIS-based DSSA algorithm, while maintaining
the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape
How to combine probabilistic and fuzzy uncertainties in fuzzy control
Fuzzy control is a methodology that translates natural-language rules, formulated by expert controllers, into the actual control strategy that can be implemented in an automated controller. In many cases, in addition to the experts' rules, additional statistical information about the system is known. It is explained how to use this additional information in fuzzy control methodology
- …