3 research outputs found

    Polyphasic evaluation and cytotoxic investigation of isolated cyanobacteria with an emphasis on potent activities of a Scytonema strain

    Get PDF
    DATA AVAILABILITY STATEMENT : The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.Cyanobacteria are phototrophic organisms widely found in most types of natural habitats in the tropical regions of the world. In this study, we isolated and identified cyanobacterial strains from paddy soil in Hanoi (Vietnam) and investigated their cytotoxic activities. Five isolated cyanobacterial strains showed distinctive profiles of gene sequences (rRNA 16S and rbcL), phylogenetic placements, and morphological characteristics. Based on the polyphasic evaluation, they were classified as Scytonema bilaspurense NK13, Hapalosiphon welwitschii MD2411, Aulosira sp. XN1103, Desikacharya sp. NS2000, and Desmonostoc sp. NK1813. The cytotoxic screening revealed that the extract of strain Scytonema bilaspurense NK13 exhibited potent cytotoxic activities against four human cell lines of HeLa cells, OVCAR-8 cells, HaCaT cells, and HEK-293T cells, with IC50 values of 3.8, 34.2, 21.6, and 0.6μg/mL, respectively. This is the first time a well-classified Scytonema strain from tropical habitat in Southeast Asia has been recognized as a potential producer of cytotoxic compounds.The Vietnam National University, Hanoi (VNU).http://www.frontiersin.org/Microbiologyam2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Human versus equine intramuscular antitoxin, with or without human intrathecal antitoxin, for the treatment of adults with tetanus: a 2x2 factorial randomized control trial

    No full text
    Background: Intramuscular antitoxin is recommended in tetanus treatment, but there are few data comparing human and equine preparations. As tetanus toxin acts within the central nervous system, where there is limited penetration of peripherally-administered antitoxin, intrathecal antitoxin administration may improve clinical outcomes compared to intramuscular injection. Methods: In a 2x2 factorial trial, adults with tetanus in a single-centre in Vietnam were randomized first to 3,000 IU human or 21,000 U equine intramuscular antitoxin, then to either 500 IU intrathecal human antitoxin or sham procedure. Interventions were delivered by independent clinicians, with attending clinicians and study staff blind to treatment allocations. The primary outcome was requirement for mechanical ventilation. Secondary outcomes included in-hospital mortality, death and disability at 240-days, duration of intensive care unit (ICU) stay, and adverse events. The study was registered at ClinicalTrials.gov, NCT 02999815 (status: recruitment completed). Findings: 272 adults were randomized. Mechanical ventilation was given to 56/130 (43%) of patients allocated to intrathecal antitoxin and 65/131 (50%) allocated to sham procedure (RR 0.87; 95% CI 0.66 to 1.13; p=0.29). For the intramuscular allocation 48/107 (45%), patients allocated to human antitoxin received mechanical ventilation compared to 48/108 (44%) patients allocated to equine antitoxin (relative risk (RR) 1.01, 95% confidence interval (CI) 0.75, 1.36, p=0.95). No clinically-relevant differences in secondary outcomes or adverse events were seen except for shorter length of ICU stay in those treated with intrathecal antitoxin compared to sham. Interpretation: We found no advantage of intramuscular human antitoxin over intramuscular equine antitoxin in tetanus treatment. Intrathecal antitoxin administration was safe but did not provide overall benefit in addition to intramuscular antitoxin administration. Funding: The Wellcome Trust, grant number 107367/Z/15/Z
    corecore