5,416 research outputs found

    Reduced-Basis Methods for Inverse Problems in Partial Differential Equations

    Get PDF
    We present a technique for the rapid, reliable, and accurate evaluation of functional outputs of parametrized elliptic partial differential equations. The essential ingredients are (i) rapidly globally convergent reduced-basis approximations – Galerkin projection onto a space WN spanned by the solutions of the governing partial differential equations at N selected points in parameter space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide sharp and inexpensive bounds for the error in the output of interest; and (iii) off-line/online computational procedures – methods that decouple the generation and projection stages of the approximation process. The operation count for the online stage – in which, given a new parameter, we calculate the output of interest and associated error bounds – depends only on N (typically very small) and the parametric dependencies of the problem. In this study, we first develop rigorous a posteriori error estimators for (affine in the parameter) noncoercive problems such as the Helmholtz (reduced-wave) equation. The critical ingredients are the residual, an appropriate bound conditioner, and a piecewise-constant lower bound for the inf-sup stability factor. In addition, globally nonaffine (and nonlinear) problems are also considered: in particular, through appropriate sampling and interpolation procedures, these more difficult problems can be reduced (with very high accuracy) to the more tractable affine case. Finally, we propose a real-time - procedure for inverse problems associated with parametrized partial differential equations based on our reduced-basis approximations and error bounds. In general practice, many inverse problems are formulated as an error minimization statement relating the calculated and measured outputs. This optimization procedure requires many evaluations of the output: the reduced-basis method --- with extremely low marginal cost --- is thus very efficient for this class of problems. As an illustrative example, we consider a very important application in nondestructive evaluation: crack identification (by harmonic excitation) in a laminated plate of composite material. The numerical results demonstrate the efficiency and accuracy of the method in detecting the location and length of the crack.Singapore-MIT Alliance (SMA

    Thermal kinetic inductance detectors for ground-based millimeter-wave cosmology

    Get PDF
    We show measurements of thermal kinetic inductance detectors (TKID) intended for millimeter wave cosmology in the 200-300 GHz atmospheric window. The TKID is a type of bolometer which uses the kinetic inductance of a superconducting resonator to measure the temperature of the thermally isolated bolometer island. We measure bolometer thermal conductance, time constant and noise equivalent power. We also measure the quality factor of our resonators as the bath temperature varies to show they are limited by effects consistent with coupling to two level systems.Comment: 8 pages, 4 figures. Submitted to Journal of Low Temperature Physic

    Certified Rapid Solution of Parametrized Linear Elliptic Equations: Application to Parameter Estimation

    Get PDF
    We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.Singapore-MIT Alliance (SMA

    Localization of complement factor H gene expression and protein distribution in the mouse outer retina.

    Get PDF
    To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina.Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC.Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh(-/-) eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh(-/-) mice. Greatly reduced Cfh protein immunohistological signals in the Cfh(-/-) eyes also supported the specificity of the Cfh protein distribution results.Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC

    Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints

    Full text link
    Objective: The purpose of this manuscript is to accelerate cardiac diffusion tensor imaging (CDTI) by integrating low-rankness and compressed sensing. Methods: Diffusion-weighted images exhibit both transform sparsity and low-rankness. These properties can jointly be exploited to accelerate CDTI, especially when a phase map is applied to correct for the phase inconsistency across diffusion directions, thereby enhancing low-rankness. The proposed method is evaluated both ex vivo and in vivo, and is compared to methods using either a low-rank or sparsity constraint alone. Results: Compared to using a low-rank or sparsity constraint alone, the proposed method preserves more accurate helix angle features, the transmural continuum across the myocardium wall, and mean diffusivity at higher acceleration, while yielding significantly lower bias and higher intraclass correlation coefficient. Conclusion: Low-rankness and compressed sensing together facilitate acceleration for both ex vivo and in vivo CDTI, improving reconstruction accuracy compared to employing either constraint alone. Significance: Compared to previous methods for accelerating CDTI, the proposed method has the potential to reach higher acceleration while preserving myofiber architecture features which may allow more spatial coverage, higher spatial resolution and shorter temporal footprint in the future.Comment: 11 pages, 16 figures, published on IEEE Transactions on Biomedical Engineerin

    Element similarity in high-dimensional materials representations

    Full text link
    The traditional display of elements in the periodic table is convenient for the study of chemistry and physics. However, the atomic number alone is insufficient for training statistical machine learning models to describe and extract composition-structure-property relationships. Here, we assess the similarity and correlations contained within high-dimensional local and distributed representations of the chemical elements, as implemented in an open-source Python package ElementEmbeddings. These include element vectors of up to 200 dimensions derived from known physical properties, crystal structure analysis, natural language processing, and deep learning models. A range of distance measures are compared and a clustering of elements into familiar groups is found using dimensionality reduction techniques. The cosine similarity is used to assess the utility of these metrics for crystal structure prediction, showing that they can outperform the traditional radius ratio rules for the structural classification of AB binary solids.Comment: 7 pages, 8 figure

    A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient

    Get PDF
    In this work, a Reduced Basis (RB) approach is used to solve a large number of boundary value problems parametrized by a stochastic input – expressed as a Karhunen–Loùve expansion – in order to compute outputs that are smooth functionals of the random solution fields. The RB method proposed here for variational problems parametrized by stochastic coefficients bears many similarities to the RB approach developed previously for deterministic systems. However, the stochastic framework requires the development of new a posteriori estimates for “statistical” outputs – such as the first two moments of integrals of the random solution fields; these error bounds, in turn, permit efficient sampling of the input stochastic parameters and fast reliable computation of the outputs in particular in the many-query context.United States. Air Force Office of Scientific Research (Grant FA9550-07-1-0425)Singapore-MIT Alliance for Research and TechnologyChaire d’excellence AC

    Element similarity in high-dimensional materials representations

    Get PDF
    The traditional display of elements in the periodic table is convenient for the study of chemistry and physics. However, the atomic number alone is insufficient for training statistical machine learning models to describe and extract composition-structure–property relationships. Here, we assess the similarity and correlations contained within high-dimensional local and distributed representations of the chemical elements, as implemented in an open-source Python package ElementEmbeddings. These include element vectors of up to 200 dimensions derived from known physical properties, crystal structure analysis, natural language processing, and deep learning models. A range of distance measures are compared and a clustering of elements into familiar groups is found using dimensionality reduction techniques. The cosine similarity is used to assess the utility of these metrics for crystal structure prediction, showing that they can outperform the traditional radius ratio rules for the structural classification of AB binary solids

    Component-based reduced basis for parametrized symmetric eigenproblems

    Get PDF
    Background: A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods: Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ-shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter σ>0. Assuming that σ=λ n >0, the nth real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “ σ-shifted” eigenproblem for the full system. We then perform a direct search to find the values of σ that yield singular systems, corresponding to the eigenvalues of the original eigenproblem. Results: We provide eigenvalue a posteriori error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach. Conclusions: We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.United States. Air Force Office of Scientific Research (OSD/AFOSR/MURI Grant FA9550-09-1-0613)United States. Office of Naval Research (ONR Grant N00014-11-1-0713)Deshpande Center for Technological Innovation (grant)Switzerland. Commission for Technology and Innovation (CTI
    • 

    corecore