2,792 research outputs found
Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening
© 2017 Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening
Spatial correlations in chaotic nanoscale systems with spin-orbit coupling
We investigate the statistical properties of wave functions in chaotic
nanostructures with spin-orbit coupling (SOC), focussing in particular on
spatial correlations of eigenfunctions. Numerical results from a microscopic
model are compared with results from random matrix theory in the crossover from
the gaussian orthogonal to the gaussian symplectic ensembles (with increasing
SOC); one- and two-point distribution functions were computed to understand the
properties of eigenfunctions in this crossover. It is found that correlations
of wave function amplitudes are suppressed with SOC; nevertheless,
eigenfunction correlations play a more important role in the two-point
distribution function(s), compared to the case with vanishing SOC. Experimental
consequences of our results are discussed.Comment: Submitted to PR
Cr Isotopic Abundances
We have developed techniques for the chemical separation and isotopic analysis of Cr in silicates and spinels. The purpose is to pursue the evidence for correlated isotopic effects in Ca-AI-rich inclusions (CAl) for elements in the vicinity of the Fe-abundance peak. Such a correlation is most striking for Ca and Ti for the FUN inclusions EK-1-4-1 and C-1 (Lee eta/., 1978; Niederer et al., 1980)
Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater
© 2018 This study developed a new microbial fuel cell (MFC) system (Sponge-MFC), which consisted of a cathodic chamber with an added sponge and two anodic chambers, for low carbon/nitrogen (C/N) wastewater treatment. When operating in the closed-circuit state, the Sponge-MFC(C) demonstrated its superior electrochemical performance compared to the closed-circuit MFC. This superiority took the form of higher coulombic efficiencies, voltage outputs, current densities and power densities. Adding a sponge could reduce the cathode's charge transfer resistance and solution resistance, and improve its capacitance, thus increasing cathodic reaction rate and power outputs. Simultaneous nitrification denitrification (SND) and bioelectrochemical denitrification processes on the cathode coupled with the sponge's SND process were responsible for efficient removal of nitrogen from the Sponge-MFC(C). Fluorescent in situ hybridization (FISH) analysis revealed that nitrifying bacteria and highly diversified denitrifying bacteria were distributed at the cathode's outer layer and inner layer, respectively. Higher phosphorus removal efficiencies (82.06 ± 1.21%) in the Sponge-MFC(C) than that in the MFC(C) (53.97 ± 2.32%) could be ascribed to biological phosphorus removal and precipitation of phosphate salts on the cathode. These results suggested the Sponge-MFC(C) could accomplish better electrochemical behaviors and nutrient removal due to sponge addition when treating wastewater with low C/N ratio
Electron probe microanalysis of ion exchange of selected elements between dentine and adhesive restorative materials
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: There have been numerous attempts to demonstrate the phenomenon of ion exchange between auto cure glass ionomer cements (GICs) and dentine. The purpose of this study was to employ an electron probe microanalysis (EPMA) technique to examine the interchange of elements between non-demineralized dentine and two types of restorative material, auto cure GICs and a resin composite. Methods: Restorations of auto cure GICs (Riva Fast, Fuji IX Fast, Ketac Molar Quick and Fuji VII) and a bonded composite resin were placed in each of 10 recently extracted human third molar teeth. After two weeks the restorations were sectioned and prepared for EPMA. Percentage weights of calcium, phosphorus aluminum, strontium and fluoride were calculated in the restorations 200μm from the restorative interface and 200μm into the dentine at 5μm intervals. Results: There was evidence of calcium and phosphorus in all five auto cure GICs to a depth of 50μm. Aluminum and strontium ions were also present in dentine except subjacent to Ketac Molar restorations. There was evidence of element transfer into composite resin and resin-bonded dentine. Conclusions: The findings of this paper support the concept of ion exchange as a bonding mechanism between auto cure GIC and dentine. Element penetration into tooth structure and GIC exceeded beyond the “ion exchange layer” observed in scanning electron microscopy studies. Penetration of calcium and phosphorus into composite resin from dentine likely occurred as a result of the self-etching process dissolving calcium and phosphorus and incorporating these elements into the hybrid layer. The presence of Al and Sr ions in dentine were likely to be associated with resin tags extending into the dentine.GM Knight, JM McIntyre, GG Craig and Mulyan
Magnetization of a neutron plasma with Skyrme and Gogny forces in the presence of a strong magnetic field
Some thermodynamical magnitudes of interest in a pure neutron plasma are
studied within the framework of the non-relativistic Brueckner-Hartree-Fock
approximation at finite density and temperature. We use Skyrme and Gogny forces
to describe such a neutron plasma and study the main differences that arise in
these two effective parametrizations of the nuclear interaction when a strong
magnetic field induces a permanent magnetization in the gas. The existence of a
non-zero permanent spin polarization in a neutron plasma is explored in the
density-temperature parameter space. We find that for moderate temperatures and
in the low density range up to densities both
parametrizations predict that as density decreases an increasingly strong
magnetization is allowed. In the range there is an approximately constant polarization that can be as big as
for the maximum allowed interior magnetic field G. For higher densities there is a dramatic difference in the
polarization trend followed by Skyrme an Gogny forces. While the former predict
a ferromagnetic phase transition, the Gogny forces prevent it keeping the
magnetization below 5%.Comment: 21 pages, 16 figures, 1 tabl
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
We have discovered a doubly eclipsing, bound, quadruple star system in the
field of K2 Campaign 7. EPIC 219217635 is a stellar image with that
contains an eclipsing binary (`EB') with d and a second EB with
d. We have obtained followup radial-velocity (`RV')
spectroscopy observations, adaptive optics imaging, as well as ground-based
photometric observations. From our analysis of all the observations, we derive
good estimates for a number of the system parameters. We conclude that (1) both
binaries are bound in a quadruple star system; (2) a linear trend to the RV
curve of binary A is found over a 2-year interval, corresponding to an
acceleration, cm s; (3) small
irregular variations are seen in the eclipse-timing variations (`ETVs')
detected over the same interval; (4) the orbital separation of the quadruple
system is probably in the range of 8-25 AU; and (5) the orbital planes of the
two binaries must be inclined with respect to each other by at least
25. In addition, we find that binary B is evolved, and the cooler and
currently less massive star has transferred much of its envelope to the
currently more massive star. We have also demonstrated that the system is
sufficiently bright that the eclipses can be followed using small ground-based
telescopes, and that this system may be profitably studied over the next decade
when the outer orbit of the quadruple is expected to manifest itself in the ETV
and/or RV curves.Comment: Accepted for publication in MNRA
- …