1,052 research outputs found

    Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA

    Get PDF
    Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and PACT form a triple complex with Dicer and facilitate the production of small interfering RNA (siRNA) by Dicer. Knockdown of both TRBP and PACT in cultured cells leads to significant inhibition of gene silencing mediated by short hairpin RNA but not by siRNA, suggesting that TRBP and PACT function primarily at the step of siRNA production. Taken together, these findings indicate that human TRBP and PACT directly interact with each other and associate with Dicer to stimulate the cleavage of double-stranded or short hairpin RNA to siRNA. Our work significantly alters the current model for the assembly and function of the Dicer-containing complex that generates siRNA and micro-RNA in human. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.postprin

    Differential expression, localization and activity of two alternatively spliced isoforms of human APC regulator CDH1

    Get PDF
    The timely destruction of key regulators through ubiquitin-mediated proteolysis ensures the orderly progression of the cell cycle. The APC (anaphase-promoting complex) is a major component of this degradation machinery and its activation is required for the execution of critical events. Recent studies have just begun to reveal the complex control of the APC through a regulatory network involving WD40 repeat proteins CDC20 and CDH1. In the present paper, we report on the identification and characterization of human CDH1β, a novel alternatively spliced isoform of CDH1. Both CDH1α and CDH1β can bind to the APC and stimulate the degradation of cyclin B1, but they are differentially expressed in human tissues and cells. CDH1α contains a nuclear localization signal which is absent in CDH1β. Intracellularly, CDH1α appears in the nucleus whereas CDH1β is a predominantly cytoplasmic protein. The forced overexpression of CDH1α in cultured cells correlates with the reduction of nuclear cyclin A, but the steady-state amount of cyclin A does not change noticeably in CDH1β-overexpressed cells. In Xenopus embryos, ectopic overexpression of human CDH1α, but not of CDH1β, induces cell-cycle arrest during the first G1 phase at the midblastula transition. Taken together, our findings document the differential expression, subcellular localization and cell-cycle-regulatory activity of human CDH1 isoforms.postprin

    Rapamycin and CCI-779 inhibit the mammalian target of rapamycin signalling in hepatocellular carcinoma

    Get PDF
    Background: The mammalian target of rapamycin (mTOR), which phosphorylates p70S6K and 4EBP1 and activates the protein translation process, is upregulated in cancers and its activation may be involved in cancer development. Aims: In this study, we investigated the tumour-suppressive effects of rapamycin and its new analogue CCI-779 on hepatocellular carcinoma (HCC). Methods: Rapamycin and its new analogue CCI-779 were applied to treat HCC cells. Cell proliferation, cell cycle profile and tumorigenicity were analysed. Results: In human HCCs, we observed frequent (67%, 37/55) overexpression of mTOR transcripts using real-time reverse transcriptasepolymerase chain reaction. Upon drug treatment, PLC/PRF/5 showed the greatest reduction in cell proliferation using the colony formation assay, as compared with HepG2, Hep3B and HLE. Rapamycin was a more potent antiproliferative agent than CCI-779 in HCC cell lines. Proliferation assays by cell counting showed that the IC50 value of rapamycin was lower than that of CCI-779 in PLC/PRF/5 cells. Furthermore, flow cytometric analysis showed that both drugs could arrest HCC cells in the G1 phase but did not induce apoptosis of these cells, suggesting that these mTOR inhibitors are cytostatic rather than cytotoxic. Upon rapamycin and CCI-779 treatment, the phosphorylation level of mTOR and p70S6K in HCC cell lines was significantly reduced, indicating that both drugs can suppress mTOR activity in HCC cells. In addition, both drugs significantly inhibited the growth of xenografts of PLC/PRF/5 cells in nude mice. Conclusions: Our findings indicate that rapamycin and its clinical analogue CCI-779 possess tumour-suppressive functions towards HCC cells. © 2009 John Wiley & Sons A/S.postprin

    PAK4 phosphorylates p53 at serine 215 to promote liver cancer metastasis

    Get PDF
    PAK4 kinase contributes to signaling pathways controlling cancer cell transformation, invasion and survival, but its clinicopathological impact has begun to emerge only recently. Here we report that PAK4 overexpression in hepatocellular carcinoma (HCC) conveys aggressive metastatic properties. A novel nuclear splice isoform of PAK4 lacking exon 2 sequences was isolated as part of our studies. By stably overexpressing or silencing PAK4 in HCC cells we showed that it was critical for their migration. Mechanistic investigations in this setting revealed that PAK4 directly phosphorylated p53 at S215, which not only attenuated transcriptional transactivation activity but also inhibited p53-mediated suppression of HCC cell invasion. Taken together, our results showed how PAK4 overexpression in HCC promotes metastatic invasion by regulating p53 phosphorylation.postprin

    CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells

    Get PDF
    CDK5 regulatory subunit associated protein 3 (CDK5RAP3) is a novel activator of PAK4 and processes important pro-metastatic function in hepatocarcinogenesis. However, it remains unclear if there are other mechanisms by which CDK5RAP3 promotes HCC metastasis. Here, we showed that in CDK5RAP3 stable knockdown SMMC-7721 HCC cells, p14(ARF) tumor suppressor was upregulated at protein and mRNA levels, and ectopic expression of CDK5RAP3 was found to repress the transcription of p14(ARF). Using chromatin immunoprecipitation assay, we demonstrated that CDK5RAP3 bound to p14(ARF) promoter in vivo. Furthermore, knockdown of p14(ARF) in CDK5RAP3 stable knockdown HCC cells reversed the suppression of HCC cell invasiveness mediated by knockdown of CDK5RAP3. Taken together, our findings provide the new evidence that overexpression of CDK5RAP3 promotes HCC metastasis via downregulation of p14(ARF).published_or_final_versio

    Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma

    Get PDF
    Deleted in liver cancer (DLC1) is a candidate tumor suppressor gene recently isolated from human hepatocellular carcinoma. Structurally, DLC1 protein contains a conserved GTPase-activating protein for Rho family protein (RhoGAP) domain, which has been thought to regulate the activity of Rho family proteins. Previous studies indicated that DLC1 was frequently inactivated in cancer cells. In the present study, we aimed to characterize the tumor suppressor roles of DLC1 in hepatocellular carcinoma. We showed that DLC1 significantly inhibited cell proliferation, anchorage-independent growth, and in vivo tumorigenicity when stably expressed in hepatocellular carcinoma cells. Moreover, DLC1 expression greatly reduced the motility and invasiveness of hepatocellular carcinoma cells. With RhoGAP-deficient DLC1 mutant (DLC1-K714E), we showed that the RhoGAP activity was essential for DLC1-mediated tumor suppressor function. Furthermore, the 292- to 648-amino acid region and the steroidogenic acute regulatory related lipid transfer domain played an auxiliary role to RhoGAP and tumor suppressor function of DLC1. Taken together, our findings showed that DLC1 functions as a tumor suppressor in hepatocellular carcinoma and provide the first evidence to support the hypothesis that DLC1 suppresses cancer cell growth by negatively regulating the activity of Rho proteins. ©2005 American Association for Cancer Research.postprin

    Functional characterization of a novel RhoGAP protein Deleted in Liver Cancer 2 (DLC2)

    Get PDF
    published_or_final_versio

    Hepatocyte-specific activation of NF-κB does not aggravate chemical hepatocarcinogenesis in transgenic mice

    Get PDF
    The NF-κB signalling pathway plays important roles in liver organogenesis and cardnogenesis. Mouse embryos deficient in IKKβ die in mid-gestation, due to excessive apoptosis of hepatoblasts. Although activation of the NF-κB signalling pathway has been demonstrated in human hepatocellular carcinoma, the role of NF-κB is controversial. Here, we have generated transgenic mice in which a constitutively active form of IKKβ was expressed in a hepatocyte-specific manner. Using electrophoretic mobility shift assay, we documented increased NF-κB activities and up-regulated levels of NF-κB downstream target genes, Bcl-xL and STAT5, in the transgenic mouse livers. These results confirmed that the NF-κB pathway was activated in the livers of the transgenic mice. However, there was no significant difference in tumour formation between transgenic and wild-type mice up to an age of 50 weeks. When we treated the transgenic mice with the chemical carcinogen diethylnitrosamine (DEN), we observed no significant differences in the incidence and size of liver tumours formed in these mice with and without DEN treatment at 35 weeks of age, suggesting that the activated NF-κB pathway in the livers of the transgenic mice did not enhance hepatocarcinogenesis. Interestingly, some of the transient transgenic embryos (E12.5) had abnormal excessive accumulation of nucleated red blood cells in their developing livers. In summary, NF-κB activation in hepatocytes did not significantly affect chemical hepatocarcinogenesis. In addition, the TTR/IKKCA transgenic mice may serve as a useful model for studying the role of NF-κB activation in hepatocarcinogenesis as well as inflammatory and metabolic diseases. Copyright © 2008 Pathological Society of Great Britain and Ireland.postprin
    • …
    corecore