29,574 research outputs found

    Enhancing students’ confidence, competence and knowledge with Integrated Skills Challenge

    Get PDF
    Introduction/background: In today's complex healthcare environment, new nursing graduates are expected to master nursing skills in a timely manner and become critical thinkers with the capacity of solving complex healthcare problems efficiently. The increased complexity of the clinical setting requires competence-building begin in introductory courses, establishing foundational skills for critical thinking and prioritisation. In the healthcare professions, teaching and learning methods are focused on integration of clinical knowledge and skills. However, traditional teaching and learning methodologies do not always facilitate the development of a requisite level of these clinical skills. For the Master of Nursing Studies (MNSt) students whose program is shortened this means the acquisition of these skills must be achieved more rapidly. Aim/objectives: The purpose of this study is to investigate the feasibility of developing simulation scenarios (Integrated Skill Challenge [ISC]) as a supplemental teaching-learning strategy to enhance the transfer of student self-confidence and competence to the clinical nursing environment. Methods To examine potential effects of ISC on the MNSt students, a pilot study was conducted including 52 participants. Data were collected weekly over 11 week period by using pre and post-test design. Results: Analysis showed a significant increase in the confidence, competence and knowledge. Confidence, competence and knowledge scores increased when students were pre-loaded with knowledge prior to performing in the ISC. Results generally indicated that the ISC had the anticipated effects. Conclusions: This study reveals a high feasibility of developing simulation scenarios as an active learning methodology and that it should be developed further and piloted on a larger sample

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Jointly optimised iterative source-coding, channel-coding and modulation for transmission over wireless channels

    No full text
    Joint source-coding, channel-coding and modulation schemes based on Variable Length Codes (VLCs), Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) schemes are proposed. A significant coding gain is achieved without bandwidth expansion, when exchanging information between the VLC and the coded modulation decoders with the advent of iterative decoding. With the aid of using independent interleavers for the In-phase and Quadrature phase components of the complex-valued constellation, further diversity gain may be achieved. The performance of the proposed schemes is evaluated over both AWGN and Rayleigh fading channels. Explicitly, at BER = 10-5 most of the proposed schemes have BER curves less than one-dB away from the channel capacity limit

    A Purely Symbol-Based Precoded and LDPC-Coded Iterative-Detection Assisted Sphere-Packing Modulated Space-Time Coding Scheme

    No full text
    In this contribution, we propose a purely symbol-based LDPC-coded scheme based on a Space-Time Block Coding (STBC) signal construction method that combines orthogonal design with sphere packing, referred to here as (STBCSP). We demonstrate that useful performance improvements may be attained when sphere packing aided modulation is concatenated with non-binary LDPC especially, when performing purely symbol-based turbo detection by exchanging extrinsic information between the non-binary LDPC decoder and a rate-1 non-binary inner precoder. We also investigate the convergence behaviour of this symbol-based concatenated scheme with the aid of novel non-binary Extrinsic Information Transfer (EXIT) Charts. The proposed symbol-based turbo-detected STBC-SP scheme exhibits a 'turbo-cliff' at Eb/N0 = 5.0 dB and achieves an Eb/N0 gain of 19.2dB at a BER of 10-5 over Alamouti’s scheme

    A Turbo-Detection Aided Serially Concatenated MPEG-4/TCM Videophone Transceiver

    No full text
    A Turbo-detection aided serially concatenated inner Trellis Coded Modulation (TCM) scheme is combined with four different outer codes, namely with a Reversible Variable Length Code (RVLC), a Non-Systematic Convolutional (NSC) code a Recursive Systematic Convolutional (RSC) code or a Low Density Parity Check (LDPC) code. These four outer constituent codes are comparatively studied in the context of an MPEG4 videophone transceiver. These serially concatenated schemes are also compared to a stand-alone LDPC coded MPEG4 videophone system at the same effective overall coding rate. The performance of the proposed schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the serially concatenated TCM-NSC scheme was the most attractive one in terms of coding gain and decoding complexity among all the schemes considered in the context of the MPEG4 videophone transceiver. By contrast, the serially concatenated TCM-RSC scheme was found to attain the highest iteration gain among the schemes considered

    Space-time in light of Karolyhazy uncertainty relation

    Get PDF
    General relativity and quantum mechanics provide a natural explanation for the existence of dark energy with its observed value and predict its dynamics. Dark energy proves to be necessary for the existence of space-time itself and determines the rate of its stability.Comment: 5 pages, Two misprints are correcte

    Charged black holes in Vaidya backgrounds: Hawking's Radiation

    Full text link
    In this paper we propose a class of embedded solutions of Einstein's field equations describing non-rotating Reissner-Nordstrom-Vaidya and rotating Kerr-Newman-Vaidya black holes.Comment: 30 pages, latex file, no figure
    corecore