23,157 research outputs found

    Dynamical stability of entanglement between spin ensembles

    Full text link
    We study the dynamical stability of the entanglement between the two spin ensembles in the presence of an environment. For a comparative study, we consider the two cases: a single spin ensemble, and two ensembles linearly coupled to a bath, respectively. In both circumstances, we assume the validity of the Markovian approximation for the bath. We examine the robustness of the state by means of the growth of the linear entropy which gives a measure of the purity of the system. We find out macroscopic entangled states of two spin ensembles can stably exist in a common bath. This result may be very useful to generate and detect macroscopic entanglement in a common noisy environment and even a stable macroscopic memory.Comment: 4 pages, 1 figur

    Idealized Slab Plasma approach for the study of Warm Dense Matter

    Full text link
    Recently, warm dense matter (WDM) has emerged as an interdisciplinary field that draws increasing interest in plasma physics, condensed matter physics, high pressure science, astrophysics, inertial confinement fusion, as well as materials science under extreme conditions. To allow the study of well-defined WDM states, we have introduced the concept of idealized-slab plasmas that can be realized in the laboratory via (i) the isochoric heating of a solid and (ii) the propagation of a shock wave in a solid. The application of this concept provides new means for probing the dynamic conductivity, equation of state, ionization and opacity. These approaches are presented here using results derived from first-principles (density-functional type) theory, Thomas-Fermi type theory, and numerical simulations.Comment: 37 pages, 21 figures, available, pdf file only. To appear in: Laser and Particle beams. To appear more or less in this form in Laser and Particle beam

    Understanding Well-Being in Multi-Levels: A review

    Get PDF
    Well-being is not only an emerging research agenda, but also a critical issue concerning the individual as well as the societal development, because how the issue is viewed has a huge theoretical as well as practical, even policy, implication. In academic, while some argue that well-being is in the subjective perception of one’s life or psychological functioning, others argue that well-being is in the objective conditions and the broader environment. This paper, drawing on psychology tradition, tries to go beyond the dichotomy of well-being as either an individual attribute or external conditions. Instead, this article acknowledges the multi-levels of well-being are closely tied and should be taken into accounts when well-being is concerned. We will provide a brief review of the two major approaches – subjective well-being and quality of life – of well-being before the multi-level approach is introduced. The strength and challenges of the multilevel approach will be discussed

    Frustrated multiband superconductivity

    Full text link
    We show that a clean multiband superconductor may display one or several phase transitions with increasing temperature from or to frustrated configurations of the relative phases of the superconducting order parameters. These transitions may occur when more than two bands are involved in the formation of the superconducting phase and when the number of repulsive interband interactions is odd. These transitions are signalled by slope changes in the temperature dependence of the superconducting gaps.Comment: 5 pages, 3 figure

    Birth Kick Distributions and the Spin-Kick Correlation of Young Pulsars

    Full text link
    Evidence from pulsar wind nebula symmetry axes and radio polarization observations suggests that pulsar motions correlate with the spin directions. We assemble this evidence for young isolated pulsars and show how it can be used to quantitatively constrain birth kick scenarios. We illustrate by computing several plausible, but idealized, models where the momentum thrust is proportional to the neutrino cooling luminosity of the proto-neutron star. Our kick simulations include the effects of pulsar acceleration and spin-up and our maximum likelihood comparison with the data constrains the model parameters. The fit to the pulsar spin and velocity measurements suggests that: i) the anisotropic momentum required amounts to ~10% of the neutrino flux, ii) while a pre-kick spin of the star is required, the preferred magnitude is small 10-20rad/s, so that for the best-fit models iii) the bulk of the spin is kick-induced with Ωˉ\bar \Omega ~120rad/s and iv) the models suggest that the anisotropy emerges on a timescale τ\tau ~1-3s.Comment: 37 pages, 13 figures, ApJ accepte

    Probing spacetime foam with extragalactic sources

    Get PDF
    Due to quantum fluctuations, spacetime is probably ``foamy'' on very small scales. We propose to detect this texture of spacetime foam by looking for core-halo structures in the images of distant quasars. We find that the Very Large Telescope interferometer will be on the verge of being able to probe the fabric of spacetime when it reaches its design performance. Our method also allows us to use spacetime foam physics and physics of computation to infer the existence of dark energy/matter, independent of the evidence from recent cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several references added; very useful comments and suggestions by Eric Perlman incorporate

    Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method

    Get PDF
    Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum

    Analytic structure of the S-matrix for singular quantum mechanics

    Get PDF
    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.Fil: Camblong, Horacio E.. University of San Francisco; Estados UnidosFil: Epele, Luis Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: Fanchiotti, Huner. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: García Canal, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; Argentin

    Pulsar Wind Nebulae in the SKA era

    Get PDF
    Neutron stars lose the bulk of their rotational energy in the form of a pulsar wind: an ultra-relativistic outflow of predominantly electrons and positrons. This pulsar wind significantly impacts the environment and possible binary companion of the neutron star, and studying the resultant pulsar wind nebulae is critical for understanding the formation of neutron stars and millisecond pulsars, the physics of the neutron star magnetosphere, the acceleration of leptons up to PeV energies, and how these particles impact the interstellar medium. With the SKA1 and the SKA2, it could be possible to study literally hundreds of PWNe in detail, critical for understanding the many open questions in the topics listed above.Comment: Comments: 10 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14
    • 

    corecore