2,923 research outputs found

    Arginase from kiwifruit: properties and seasonal variation

    Get PDF
    The in vitro activity of arginase (EC 3.5.3.1) was investigated in youngest-mature leaves and roots (1-3 mm diameter) of kiwifruit vines (Actinidia deliciosa var. deliciosa) during an annual growth cycle, and enzyme from root material partially purified. No seasonal trend in the specific activity of arginase was observed in roots. Measurements in leaves, however, rose gradually during early growth and plateaued c. 17 weeks after budbreak. Changes in arginase activity were not correlated with changes in the concentration of arginine (substrate) or glutamine (likely end-product of arginine catabolism) in either tissue during the growth cycle. Purification was by (NH4)2SO4 precipitation and DEAE-cellulose chromatography. The kinetic properties of the enzyme, purified 60-fold over that in crude extracts, indicated a pH optimum of 8.8, and a Km (L-arginine) of 7.85 mM. Partially-purified enzyme was deactivated by dialysis against EDTA, and reactivated in the presence of Mn²⁺, Co²⁺, and Ni²⁺

    Association of High Myopia with Crystallin Beta A4 (CRYBA4) Gene Polymorphisms in the Linkage-Identified MYP6 Locus

    Get PDF
    Background: Myopia is the most common ocular disorder worldwide and imposes tremendous burden on the society. It is a complex disease. The MYP6 locus at 22 q12 is of particular interest because many studies have detected linkage signals at this interval. The MYP6 locus is likely to contain susceptibility gene(s) for myopia, but none has yet been identified. Methodology/Principal Findings: Two independent subject groups of southern Chinese in Hong Kong participated in the study an initial study using a discovery sample set of 342 cases and 342 controls, and a follow-up study using a replication sample set of 316 cases and 313 controls. Cases with high myopia were defined by spherical equivalent ⠤ -8 dioptres and emmetropic controls by spherical equivalent within ±1.00 dioptre for both eyes. Manual candidate gene selection from the MYP6 locus was supported by objective in silico prioritization. DNA samples of discovery sample set were genotyped for 178 tagging single nucleotide polymorphisms (SNPs) from 26 genes. For replication, 25 SNPs (tagging or located at predicted transcription factor or microRNA binding sites) from 4 genes were subsequently examined using the replication sample set. Fisher P value was calculated for all SNPs and overall association results were summarized by meta-analysis. Based on initial and replication studies, rs2009066 located in the crystallin beta A4 (CRYBA4) gene was identified to be the most significantly associated with high myopia (initial study: P = 0.02; replication study: P = 1.88e-4; meta-analysis: P = 1.54e-5) among all the SNPs tested. The association result survived correction for multiple comparisons. Under the allelic genetic model for the combined sample set, the odds ratio of the minor allele G was 1.41 (95% confidence intervals, 1.21-1.64). Conclusions/Significance: A novel susceptibility gene (CRYBA4) was discovered for high myopia. Our study also signified the potential importance of appropriate gene prioritization in candidate selection. © 2012 Ho et al.published_or_final_versio

    The efficacy of surgery for recurrent nasopharyngeal carcinoma

    Get PDF
    Conference Theme: Challenges to specialists in the 21st centurypublished_or_final_versio

    Prolonged myoclonus after a single bolus dose of propofol

    Get PDF
    Propofol is a commonly used anaesthetic agent and is rarely associated with seizure-like phenomena. This case report presents a young woman with seizure-like phenomena lasting more than 4 weeks after a single dose of propofol. The underlying pathophysiology of this condition is poorly understood but a psychological component is possible in this case. © 2009 The Authors.postprin

    Consensus statement on ischaemic stroke care in Hong Kong

    Get PDF
    Objective. To issue guidelines for the care of acute stroke in Hong Kong, with the target audience of all health care professionals who are involved in acute stroke care. Participants. The Hong Kong Neurological Society and the Hong Kong Stroke Society. Evidence. The panel applied the 'rule of evidence' used by the United States Agency for Health Care Policy and Research. When there is insufficient evidence, the recommendation was based on customary practice and was circulated among the members and fellows of the two societies before coming to a consensus. Consensus process. Group meetings were held in 2002 to review the literature about acute care for patients with ischaemic stroke and to issue a consensus statement with reference to the local health care system. Participants of the meetings were appointed by the councils of The Hong Kong Neurological Society and the Hong Kong Stroke Society. The draft statement was circulated among the members and fellows of the two societies for comments before it was finalised. Conclusions. Ischaemic stroke is a heavy health care burden to Hong Kong. The current consensus statement provides a framework to establish a multidisciplinary approach towards its acute management.published_or_final_versio

    Transient ischaemic attack patients are often underevaluated: Authors' reply

    Get PDF
    published_or_final_versio

    Endoscopic submucosal dissection vs laparoscopic colorectal resection for early colorectal epithelial neoplasia

    Get PDF
    published_or_final_versio

    Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects

    Get PDF
    Laser ultrasonic technology can provide a non-contact, reliable and efficient inspection of train rails. However, the laser-generated signals measured at the railhead are usually contaminated with a high level of noise and unwanted wave components that complicate the identification of defect echoes in the signal. This study explores the possibility of combining laser ultrasonic technology (LUT) and an enhanced matching pursuit (MP) to achieve a fully non-contact inspection of the rail track. A completely non-contact laser-based inspection system was used to generate and sense Rayleigh waves to detect artificial surface horizontal, surface edge, subsurface horizontal and subsurface vertical defects created at railheads of different dimensions. MP was enhanced by developing two novel dictionaries, which include a finite element method (FEM) simulation dictionary and an experimental dictionary. The enhanced MP was used to analyze the experimentally obtained laser-generated Rayleigh wave signals. The results show that the enhanced MP is highly effective in detecting defects by suppressing noise, and, further, it could also overcome the deficiency in the low repeatability of the laser-generated signals. The comparative analysis of MP with both the FEM simulation and experimental dictionaries shows that the enhanced MP with the FEM simulation dictionary is highly efficient in both noise removal and defect detection from the experimental signals captured by a laser-generated ultrasonic inspection system. The major novelty contributed by this research work is the enhanced MP method with the developments of, first, an FEM simulation dictionary and, second, an experimental dictionary that is especially suited for Rayleigh wave signals. Third, the enhanced MP dictionaries are created to process the Rayleigh wave signals generated by laser excitation and received using a 3D laser scanner. Fourth, we introduce a pioneer application of such laser-generated Rayleigh waves for inspecting surface and subsurface detects occurring in train rails

    An intercomparison of CH3O2 measurements by Fluorescence Assay by Gas Expansion and Cavity Ring–Down Spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    Get PDF
    Simultaneous measurements of CH3O2 radical concentrations have been performed using two different methods in the Leeds HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) chamber at 295 K and in 80 mbar of a mixture of 3 : 1 He : O2 and 100 mbar or 1000 mbar of synthetic air. The first detection method consisted of the indirect detection of CH3O2 using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE). The FAGE instrument was calibrated for CH3O2 in two ways. In the first method, a known concentration of CH3O2 was generated using the 185 nm photolysis of water vapour in synthetic air at atmospheric pressure followed by the conversion of the generated OH radicals to CH3O2 by reaction with CH4 / O2. This calibration can be used for experiments performed in HIRAC at 1000 mbar in air. In the second method, calibration was achieved by generating a near steady-state of CH3O2 and then switching off the photolysis lamps within HIRAC and monitoring the subsequent decay of CH3O2 which was controlled via its self-reaction, and analysing the decay using second order kinetics. This calibration could be used for experiments performed at all pressures. In the second detection method, CH3O2 has been measured directly using Cavity Ring-Down Spectroscopy (CRDS) using the absorption at 7487.98 cm-1 in the A <– X (ν12) band with the optical path along the ~1.4 m chamber diameter. Analysis of the second-order kinetic decays of CH3O2 by self-reaction monitored by CRDS has been used for the determination of the CH3O2 absorption cross section at 7487.98 cm-1, both at 100 mbar of air and at 80 mbar of a 3 : 1 He : O2 mixture, from which σCH3O2 = (1.49 ± 0.19) × 10–20 cm2 molecule-1 was determined for both pressures. The absorption spectrum of CH3O2 between 7486 and 7491 cm-1 did not change shape when the total pressure was increased to 1000 mbar, from which we determined that σCH3O2 is independent of pressure over the pressure range 100–1000 mbar in air. CH3O2 was generated in HIRAC using either the photolysis of Cl2 with UV black lamps in the presence of CH4 and O2 or the photolysis of acetone at 254 nm in the presence of O2. At 1000 mbar of synthetic air the correlation plot of [CH3O2]FAGE against [CH3O2]CRDS gave a gradient of 1.10 ± 0.02. At 100 mbar of synthetic air the gradient of the FAGE – CRDS correlation plot had a gradient of 1.06 ± 0.01 and at 80 mbar of 3 : 1 He : O2 mixture the correlation plot gradient was 0.91 ± 0.02. These results provide a validation of the FAGE method to determine concentrations of CH3O2
    corecore