19 research outputs found

    Catalysis in Action via Elementary Thermal Operations

    Full text link
    We investigate catalysis in the framework of elementary thermal operations, making use of its unique advantages to illuminate catalytic dynamics. As groundwork, we establish new technical tools that improve the computability of state transition rules for elementary thermal operations, in particular, providing a full characterization of state transitions for a qutrit system. Using these tools in conjunction with numerical methods, we find that by adopting even just a qubit catalyst, one can significantly enlarge the set of state transitions for a qutrit system, largely closing the gap of reachable states between elementary thermal operations and generic thermal operations. In addition, we decompose catalytic transitions into time-resolved evolution, from which the nonequilibrium free energy exchanges are tracked. Our results document the existence of simple and practicable catalytic advantage in thermodynamics, and demonstrate a way to analyse the mechanism of catalytic processes.Comment: 15+19 pages; 9 figures; comments are welcome

    Catalysis always degrades external quantum correlations

    Full text link
    Catalysts used in quantum resource theories need not be in isolation and therefore are possibly correlated with external systems, which the agent does not have access to. Do such correlations help or hinder catalysis, and does the classicality or quantumness of such correlations matter? To answer this question, we first focus on the existence of a non-invasively measurable observable that yields the same outcomes for repeated measurements, since this signifies macro-realism, a key property distinguishing classical systems from quantum systems. We show that a system quantumly correlated with an external system so that the joint state is necessarily perturbed by any repeatable quantum measurement, also has the same property against general quantum channels. Our full characterization of such systems called totally quantum systems, solves the open problem of characterizing tomographically sensitive systems raised in [Lie and Jeong, Phys. Rev. Lett. 130, 020802 (2023)]. An immediate consequence is that a totally quantum system cannot catalyze any quantum process, even when a measure of correlation with its environment is arbitrarily low. It generalizes to a stronger result, that the mutual information of totally quantum systems cannot be used as a catalyst either. These results culminate in the conclusion that, out of the correlations that a generic quantum catalyst has with its environment, only classical correlations allow for catalysis, and therefore using a correlated catalyst is equivalent to using an ensemble of uncorrelated catalysts.Comment: 5+7 pages, 1 figure, Comments are welcom

    Uniqueness of quantum state over time function

    Full text link
    A fundamental asymmetry exists within the conventional framework of quantum theory between space and time, in terms of representing causal relations via quantum channels and acausal relations via multipartite quantum states. Such a distinction does not exist in classical probability theory. In effort to introduce this symmetry to quantum theory, a new framework has recently been proposed, such that dynamical description of a quantum system can be encapsulated by a static quantum state over time. In particular, Fullwood and Parzygnat recently proposed the state over time function based on the Jordan product as a promising candidate for such a quantum state over time function, by showing that it satisfies all the axioms required in the no-go result by Horsman et al. However, it was unclear if the axioms induce a unique state over time function. In this work, we demonstrate that the previously proposed axioms cannot yield a unique state over time function. In response, we therefore propose an alternative set of axioms that is operationally motivated, and better suited to describe quantum states over any spacetime regions beyond two points. By doing so, we establish the Fullwood-Parzygnat state over time function as the essentially unique function satisfying all these operational axioms.Comment: 5+4 pages, comments welcom

    Variance of Relative Surprisal as Single-Shot Quantifier

    Get PDF
    The variance of (relative) surprisal, also known as varentropy, so far mostly plays a role in information theory as quantifying the leading-order corrections to asymptotic independent and identically distributed (IID) limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We show that it gives genuine sufficient and necessary conditions for approximate state transitions between pairs of quantum states in the single-shot setting, without the need for further optimization. We also clarify its relation to smoothed min and max entropies, and construct a monotone for resource theories using only the standard (relative) entropy and variance of (relative) surprisal. This immediately gives rise to enhanced lower bounds for entropy production in random processes. We establish certain properties of the variance of relative surprisal, which will be useful for further investigations, such as uniform continuity and upper bounds on the violation of subadditivity. Motivated by our results, we further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy, which we believe to be of independent interest. We illustrate our results with several applications, ranging from interconvertibility of ergodic states, over Landauer erasure to a bound on the necessary dimension of the catalyst for catalytic state transitions and Boltzmann’s H theorem

    Catalysis in Quantum Information Theory

    Full text link
    Catalysts open up new reaction pathways which can speed up chemical reactions while not consuming the catalyst. A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a (quantum) degree of freedom that remains unchanged throughout the process. In this review, we present a comprehensive overview of the concept of catalysis in quantum information science and discuss its applications in various physical contexts.Comment: Review paper; Comments and suggestions welcome

    By-passing fluctuation theorems

    Get PDF
    Fluctuation theorems impose constraints on possible work extraction probabilities in thermodynamical processes. These constraints are stronger than the usual second law, which is concerned only with average values. Here, we show that such constraints, expressed in the form of the Jarzysnki equality, can be by-passed if one allows for the use of catalysts---additional degrees of freedom that may become correlated with the system from which work is extracted, but whose reduced state remains unchanged so that they can be re-used. This violation can be achieved both for small systems but also for macroscopic many-body systems, and leads to positive work extraction per particle with finite probability from macroscopic states in equilibrium. In addition to studying such violations for a single system, we also discuss the scenario in which many parties use the same catalyst to induce local transitions. We show that there exist catalytic processes that lead to highly correlated work distributions, expected to have implications for stochastic and quantum thermodynamics

    The variance of relative surprisal as single-shot quantifier

    Full text link
    The variance of (relative) surprisal (also known as varentropy) so far mostly plays a role in information theory as quantifying the leading order corrections to asymptotic i. i. d. limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We show that it gives genuine sufficient and necessary conditions for approximate single-shot state-transitions in generic resource theories without the need for further optimization. We also clarify its relation to smoothed min- and max-entropies, and construct a monotone for resource theories using only the standard (relative) entropy and variance of (relative) surprisal. This immediately gives rise to enhanced lower bounds for entropy production in random processes. We establish certain properties of the variance of relative surprisal which will be useful for further investigations, such as uniform continuity and upper bounds on the violation of sub-additivity. Motivated by our results, we further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy which we believe to be of independent interest. We illustrate our results with several applications, ranging from interconvertibility of ergodic states, over Landauer erasure to a bound on the necessary dimension of the catalyst for catalytic state transitions and Boltzmann's H-theorem.Comment: 12+17 page

    The 4D nucleome project

    Get PDF

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore