342 research outputs found

    Ferromagnetic Convection in a Heterogeneous Darcy Porous Medium Using a Local Thermal Non-equilibrium (LTNE) Model

    Get PDF
    The combined effects of vertical heterogeneity of permeability and local thermal non-equilibrium (LTNE) on the onset of ferromagnetic convection in a ferrofluid saturated Darcy porous medium in the presence of a uniform vertical magnetic field are investigated. A two-field model for temperature representing the solid and fluid phases separately is used. The eigenvalue problem is solved numerically using the Galerkin method for different forms of permeability heterogeneity function Γ(z) and their effect on the stability characteristics of the system has been analyzed in detail. It is observed that the general quadratic variation of Γ(z) with depth has more destabilizing effect on the system when compared to the homogeneous porous medium case. Besides, the influence of LTNE and magnetic parameters on the criterion for the onset of ferromagnetic convection is also assessed

    Stability of fluid flow in a Brinkman porous medium-A numerical study

    Get PDF
    The stability of fluid flow in a horizontal layer of Brinkman porous medium with fluid viscosity different from effective viscosity is investigated. A modified Orr-Sommerfeld equation is derived and solved numerically using the Chebyshev collocation method. The critical Reynolds number Re-c, the critical wave number alpha(c) and the critical wave speed c(c) are computed for various values of porous parameter and ratio of viscosities. Based on these parameters, the stability characteristics of the system are discussed in detail. Streamlines are presented for selected values of parameters at their critical state

    Low noise equivalent power InAs avalanche photodiodes for infrared few-photon detection

    Get PDF
    Electron-only avalanche multiplication and low excess noise has previously been established in InAs avalanche photodiodes (APDs). However, there is currently a lack of experimental investigations into the noise and low photon detection capability of planar InAs APDs. Here, the noise equivalent power (NEP) of planar InAs APDs operating with a low-noise transimpedance amplifier is investigated for the first time. Our devices have a responsivity of 0.7 A/W and excellent linearity at the wavelength of 1550 nm. Using these APDs, a very low NEP of 45 fW/Hz−−−√ is achieved at a gain of 54. Modeling of the NEP suggests that the excess factor is close to 1.6. This low NEP result is corroborated by the detection of weak optical pulses corresponding to < 70 photons per 1550-nm laser pulse. Our analysis suggests that this performance can be enhanced through the suppression of the background component of the photocurrent as well as reducing the unintentional doping in the devices

    Meromorphic traveling wave solutions of the complex cubic-quintic Ginzburg-Landau equation

    Get PDF
    We look for singlevalued solutions of the squared modulus M of the traveling wave reduction of the complex cubic-quintic Ginzburg-Landau equation. Using Clunie's lemma, we first prove that any meromorphic solution M is necessarily elliptic or degenerate elliptic. We then give the two canonical decompositions of the new elliptic solution recently obtained by the subequation method.Comment: 14 pages, no figure, to appear, Acta Applicandae Mathematica

    Summing up the perturbation series in the Schwinger Model

    Get PDF
    Perturbation series for the electron propagator in the Schwinger Model is summed up in a direct way by adding contributions coming from individual Feynman diagrams. The calculation shows the complete agreement between nonperturbative and perturbative approaches.Comment: 10 pages (in REVTEX

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Characterisation, modelling and design of cut-off wavelength of InGaAs/GaAsSb Type-II superlattice photodiodes

    Get PDF
    InGaAs/GaAsSb type-II superlattice (T2SL) photodiodes grown on InP substrates are an alternative detector technology for applications operating in the short wavelength infrared (SWIR) band. Their cut-off wavelengths are heavily influenced by the thickness and material composition of InGaAs and GaAsSb used in the T2SL. We present a single band k.p. model performed using a finite difference approach in nextnano validated against two T2SL photodiode wafers and results from literature. These photodiode wafers cover both lattice matched and strained GaAs1-xSbx compositions (x = 0.40, wafer A and 0.49, wafer B). The validation data covers temperature dependence of cut-off wavelengths (obtained from phase-sensitive photo response data) from 200 K to room temperature. The cut-off wavelengths were found to reduce at 1.32 nm/K for wafer A and 1.07 nm/K for wafer B. Good agreement was achieved between the validation data and nextnano simulations, after altering the GaAs1-xSbx valance band offset bowing parameter to -1.06 eV. Using this validated model, we show that the wavefunction overlap drops significantly if the GaAsSb barrier is thicker than the InGaAs well layer, hence defining the upper limit of the barrier layer. This validated model is then used to demonstrate that there is a linear dependence between the maximum achievable wavefunction overlap and cut-off wavelength of a lattice matched InGaAs/GaAsSb T2SL. We also found that the adoption of a 5 nm/3 nm InGaAs/GaAsSb T2SL structure offers an improved wavefunction overlap over the more common 5 nm/ 5 nm InGaAs/GaAsSb T2SL designs

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets 0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, JnsRnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones JisSiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page

    Dynamical Chiral Symmetry Breaking by a Magnetic Field in QED

    Get PDF
    It is shown that the chiral symmetry is spontaneously broken by a constant magnetic field in QED. The dynamical mass of fermions (energy gap in the fermion spectrum) is mdynCeBexp[(π/α)1/2]m_{dyn}\simeq C\sqrt{eB}\exp\left[-\left(\pi/\alpha\right) ^{1/2}\right], where BB is the magnetic field, the constant CC is of order one and α=e2/4π\alpha=e^2/4\pi is the renormalized coupling constant. Possible applications of this effect are discussed.Comment: 12 pages, LaTeX. The final journal version (with minor corrections
    corecore