21,360 research outputs found

    Charged black holes in Vaidya backgrounds: Hawking's Radiation

    Full text link
    In this paper we propose a class of embedded solutions of Einstein's field equations describing non-rotating Reissner-Nordstrom-Vaidya and rotating Kerr-Newman-Vaidya black holes.Comment: 30 pages, latex file, no figure

    Spin-Orbit Coupling and Symmetry of the Order Parameter in Strontium Ruthenate

    Full text link
    Determination of the orbital symmetry of a state in spin triplet Sr2_2RuO4_4 superconductor is a challenge of considerable importance. Most of the experiments show that the chiral state of the z^(kx±iky)\hat{z} (k_x \pm ik_y) type is realized and remains stable on lowering the temperature. Here we have studied the stability of various superconducting states of Sr2_2RuO4_4 in the presence of spin-orbit coupling. Numerically we found that the chiral state is never the minimum energy. Alone among the five states studied it has =0=0 and is therefore not affected to linear order in the coupling parameter λ\lambda. We found that stability of the chiral state requires spin dependent pairing interactions. This imposes strong constraint on the pairing mechanism.Comment: 4 pages, 4 figure

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    Generalized Uncertainty Principle, Extra-dimensions and Holography

    Full text link
    We consider Uncertainty Principles which take into account the role of gravity and the possible existence of extra spatial dimensions. Explicit expressions for such Generalized Uncertainty Principles in 4+n dimensions are given and their holographic properties investigated. In particular, we show that the predicted number of degrees of freedom enclosed in a given spatial volume matches the holographic counting only for one of the available generalizations and without extra dimensions.Comment: LaTeX, 13 pages, accepted for publication in Class. Quantum Gra

    Distance Dependence in the Solar Neighborhood Age-Metallicity Relation

    Get PDF
    The age-metallicity relation for F and G dwarf stars in the solar neighborhood, based on the stellar metallicity data of Edvardsson et al. (1993), shows an apparent scatter that is larger than expected considering the uncertainties in metallicities and ages. A number of theoretical models have been put forward to explain the large scatter. However, we present evidence, based on Edvardsson et al. (1993) data, along with Hipparcos parallaxes and new age estimates, that the scatter in the age-metallicity relation depends on the distance to the stars in the sample, such that stars within 30 pc of the Sun show significantly less scatter in [Fe/H]. Stars of intermediate age from the Edvardsson et al. sample at distances 30-80 pc from the Sun are systematically more metal-poor than those more nearby. We also find that the slope of the apparent age-metallicity relation is different for stars within 30 pc than for those stars more distant. These results are most likely an artifact of selection biases in the Edvardsson et al. star sample. We conclude that the intrinsic dispersion in metallicity at fixed age is < 0.15 dex, consistent with the < 0.1 dex scatter for Galactic open star clusters and the interstellar medium.Comment: 15 pages, 5 figures, uses AASTex aaspp4 style; accepted for publication in the Astrophysical Journa

    Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals

    Get PDF
    Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD

    Can Strong Gravitational Lensing Constrain Dark Energy?

    Full text link
    We discuss the ratio of the angular diameter distances from the source to the lens, DdsD_{ds}, and to the observer at present, DsD_{s}, for various dark energy models. It is well known that the difference of DsD_ss between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (Dds/Ds)Λ(D_{ds}/D_{s})^{\Lambda} and that for other dark energy models, (Dds/Ds)other(D_{ds}/D_{s})^{\rm{other}} in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θE\theta_E), which is proportional to both Dds/DsD_{ds}/D_s and velocity dispersion squared, σv2\sigma_v^2. Dds/DsD_{ds}/D_s values depend on the parameters of each dark energy model individually. However, (Dds/Ds)Λ(Dds/Ds)other(D_{ds}/D_s)^{\Lambda} - (D_{ds}/D_{s})^{\rm{other}} for the various dark energy models, is well within the error of σv\sigma_v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy.Comment: 15 pages, 13 figures, Accepted in PR

    Decoherence in Quantum Gravity: Issues and Critiques

    Get PDF
    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath.Comment: 25 pages, proceedings of DICE06 (Piombino

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure
    corecore