69 research outputs found

    Opening a New Can of Worms: A Large-Scale RNAi Screen in Planarians

    Get PDF
    In this issue of Developmental Cell, Reddien et al. describe the first large-scale RNAi screen in freshwater planarians, classic models for regeneration studies. Their work paves the way for a detailed understanding of regeneration and tissue maintenance in these fascinating animals

    PIWI Homologs Mediate Histone H4 mRNA Localization to Planarian Chromatoid Bodies

    Get PDF
    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans

    Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The freshwater planarian <it>Schmidtea mediterranea </it>exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making <it>S. mediterranea </it>a useful model for studying germline development and sexual differentiation.</p> <p>Results</p> <p>To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent <it>in situ </it>hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs.</p> <p>Conclusions</p> <p>Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.</p

    PRMT5 and the Role of Symmetrical Dimethylarginine in Chromatoid Bodies of Planarian Stem Cells

    Get PDF
    Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway

    Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

    Get PDF
    Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system

    An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy

    Get PDF
    Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites

    PRMT5 and the role of symmetric dimethylarginine in chromatoid bodies of planarian stem cells

    Get PDF
    Reference transcriptome for Schmidtea mediterranea. File used and referred to by Rouhana et al., (2012), in work published in the journal Development.This work was supported by NIH (R01 HD043403) and NSF (IOS-0744689) awards to P.A.N., and an NSF Minority Postdoctoral Fellowship (Award #0804021) to L.R. P.A.N. is a Howard Hughes Medical Institute Investigator.published or submitted for publicationis peer reviewe
    corecore