30,451 research outputs found

    Deterministic Modularity Optimization

    Get PDF
    We study community structure of networks. We have developed a scheme for maximizing the modularity Q based on mean field methods. Further, we have defined a simple family of random networks with community structure; we understand the behavior of these networks analytically. Using these networks, we show how the mean field methods display better performance than previously known deterministic methods for optimization of Q.Comment: 7 pages, 4 figures, minor change

    Fitness-dependent topological properties of the World Trade Web

    Full text link
    Among the proposed network models, the hidden variable (or good get richer) one is particularly interesting, even if an explicit empirical test of its hypotheses has not yet been performed on a real network. Here we provide the first empirical test of this mechanism on the world trade web, the network defined by the trade relationships between world countries. We find that the power-law distributed gross domestic product can be successfully identified with the hidden variable (or fitness) determining the topology of the world trade web: all previously studied properties up to third-order correlation structure (degree distribution, degree correlations and hierarchy) are found to be in excellent agreement with the predictions of the model. The choice of the connection probability is such that all realizations of the network with the same degree sequence are equiprobable.Comment: 4 Pages, 4 Figures. Final version accepted for publication on Physical Review Letter

    Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane

    Full text link
    We consider the Edwards-Anderson Ising spin glass model on the half-plane Z×Z+Z \times Z^+ with zero external field and a wide range of choices, including mean zero Gaussian, for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution K(J,α)K(J,\alpha) of couplings J and ground state pairs α\alpha with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution K(α∣J)K(\alpha|J) is supported on a single ground state pair.Comment: 20 pages, 3 figure

    The 4-D Layer Phase as a Gauge Field Localization: Extensive Study of the 5-D Anisotropic U(1) Gauge Model on the Lattice

    Get PDF
    We study a 4+1 dimensional pure Abelian Gauge model on the lattice with two anisotropic couplings independent of each other and of the coordinates. A first exploration of the phase diagram using mean field approximation and monte carlo techniques has demonstrated the existence of a new phase, the so called Layer phase, in which the forces in the 4-D subspace are Coulomb-like while in the transverse direction (fifth dimension) the force is confining. This allows the possibility of a gauge field localization scheme. In this work the use of bigger lattice volumes and higher statistics confirms the existence of the Layer phase and furthermore clarifies the issue of the phase transitions' order. We show that the Layer phase is separated from the strongly coupled phase by a weak first order phase transition. Also we provide evidence that the Layer phase is separated by the five-dimensional Coulomb phase with a second order phase transition and we give a first estimation of the critical exponents.Comment: 19 pages, 16 figure

    Behaviour of spin-1/2 particle around a charged black hole

    Full text link
    Dirac equation is separable in curved space-time and its solution was found for both spherically and axially symmetric geometry. But most of the works were done without considering the charge of the black hole. Here we consider the spherically symmetric charged black hole background namely Reissner-Nordstrom black hole. Due to presence of the charge of black-hole charge-charge interaction will be important for the cases of incoming charged particle (e.g. electron, proton etc.). Therefore both gravitational and electromagnetic gauge fields should be introduced. Naturally behaviour of the particle will be changed from that in Schwarzschild geometry. We compare both the solutions. In the case of Reissner-Nordstrom black hole there is a possibility of super-radiance unlike Schwarzschild case. We also check this branch of the solution.Comment: 8 Latex pages and 4 Figures; RevTex.style; Accepted for Publication in Classical and Quantum Gravit

    Patterns of link reciprocity in directed networks

    Full text link
    We address the problem of link reciprocity, the non-random presence of two mutual links between pairs of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to their actual degree of correlation between mutual links. We find that real networks are always either correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial, ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by current models. This leads us to introduce a more general framework where mutual links occur with a conditional connection probability. In some of the studied networks we discuss the form of the conditional connection probability and the size dependence of the reciprocity.Comment: Final version accepted for publication on Physical Review Letter

    Statistics of Certain Models of Evolution

    Get PDF
    In a recent paper, Newman surveys the literature on power law spectra in evolution, self-organised criticality and presents a model of his own to arrive at a conclusion that self-organised criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organised critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organised critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species remains constant. It turns out that the requirement of constant species number is non-trivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organise to a state where the long time average of speciations balances that of the extinctions, otherwise the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counter example to the presence of self-organised criticality in evolution, but does provide a simple, almost analytic model that can used to understand more intricate models such as Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio

    On quasi-local charges and Newman--Penrose type quantities in Yang--Mills theories

    Get PDF
    We generalize the notion of quasi-local charges, introduced by P. Tod for Yang--Mills fields with unitary groups, to non-Abelian gauge theories with arbitrary gauge group, and calculate its small sphere and large sphere limits both at spatial and null infinity. We show that for semisimple gauge groups no reasonable definition yield conserved total charges and Newman--Penrose (NP) type quantities at null infinity in generic, radiative configurations. The conditions of their conservation, both in terms of the field configurations and the structure of the gauge group, are clarified. We also calculate the NP quantities for stationary, asymptotic solutions of the field equations with vanishing magnetic charges, and illustrate these by explicit solutions with various gauge groups.Comment: 22 pages, typos corrected, appearing in Classical and Quantum Gravit

    Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron

    Get PDF
    This study investigates the role iron oxidation plays in the purple non-sulfur bacterium Rhodobacter capsulatus SB1003. This organism is unable to grow photoautotrophically on unchelated ferrous iron [Fe(II)] despite its ability to oxidize chelated Fe(II). This apparent paradox was partly resolved by the discovery that SB1003 can grow photoheterotrophically on the photochemical breakdown products of certain ferric iron–ligand complexes, yet whether it could concomitantly benefit from the oxidation of Fe(II) to fix CO_2 was unknown. Here, we examine carbon fixation by stable isotope labeling of the inorganic carbon pool in cultures growing phototrophically on acetate with and without Fe(II). We show that R. capsulatus SB1003, an organism formally thought incapable of phototrophic growth on Fe(II), can actually harness the reducing power of this substrate and grow photomixotrophically, deriving carbon both from organic sources and from fixation of inorganic carbon. This suggests the possibility of a wider occurrence of photoferrotrophy than previously assumed
    • 

    corecore