35,962 research outputs found

    The Large Footprints of H-Space on Asymptotically Flat Space-Times

    Full text link
    We show that certain structures defined on the complex four dimensional space known as H-Space have considerable relevance for its closely associated asymptotically flat real physical space-time. More specifically for every complex analytic curve on the H-space there is an asymptotically shear-free null geodesic congruence in the physical space-time. There are specific geometric structures that allow this world-line to be chosen in a unique canonical fashion giving it physical meaning and significance.Comment: 7 page

    Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum

    Full text link
    The purpose of this work is to return, with a new observation and rather unconventional point of view, to the study of asymptotically flat solutions of Einstein equations. The essential observation is that from a given asymptotically flat space-time with a given Bondi shear, one can find (by integrating a partial differential equation) a class of asymptotically shear-free (but, in general, twistiing) null geodesic congruences. The class is uniquely given up to the arbitrary choice of a complex analytic world-line in a four-parameter complex space. Surprisingly this parameter space turns out to be the H-space that is associated with the real physical space-time under consideration. The main development in this work is the demonstration of how this complex world-line can be made both unique and also given a physical meaning. More specifically by forcing or requiring a certain term in the asymptotic Weyl tensor to vanish, the world-line is uniquely determined and becomes (by several arguments) identified as the `complex center-of-mass'. Roughly, its imaginary part becomes identified with the intrinsic spin-angular momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall

    Interacting epidemics and coinfection on contact networks

    Get PDF
    The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.Comment: 9 pages, 3 figure

    The Universal Cut Function and Type II Metrics

    Get PDF
    In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years - from the work of Hermann Bondi - that energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently we observed that there were certain overlooked structures, {defined at future null infinity,} that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of {complex} `slices' or `cuts' of Penrose's null infinity, are referred to as Universal Cut Functions, (UCF). In particular, one can define from these structures a (complex) center of mass (and center of charge) and its equations of motion - with rather surprising consequences. It appears as if these asymptotic structures contain in their imaginary part, a well defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page

    CR Structures and Asymptotically Flat Space-Times

    Full text link
    We discuss the unique existence, arising by analogy to that in algebraically special space-times, of a CR structure realized on null infinity for any asymptotically flat Einstein or Einstein-Maxwell space-time.Comment: 6 page

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    A study of defect structures with the field ion microscope Semiannual report, Sep. 1, 1966 - Feb. 28, 1967

    Get PDF
    Defect structures in ion emission images of metals and stress distributions under imaging conditions studied with field ion microscop

    Realistic spin glasses below eight dimensions: a highly disordered view

    Full text link
    By connecting realistic spin glass models at low temperature to the highly disordered model at zero temperature, we argue that ordinary Edwards-Anderson spin glasses below eight dimensions have at most a single pair of physically relevant pure states at nonzero low temperature. Less likely scenarios that evade this conclusion are also discussed.Comment: 18 pages (RevTeX; 1 figure; to appear in Physical Review E

    Asymptotically Stationary and Static Space-times and Shear-free Null Geodesic Congruences

    Full text link
    In classical electromagnetic theory, one formally defines the complex dipole moment (the electric plus 'i' magnetic dipole) and then computes (and defines) the complex center of charge by transforming to a complex frame where the complex dipole moment vanishes. Analogously in asymptotically flat space-times it has been shown that one can determine the complex center of mass by transforming the complex gravitational dipole (mass dipole plus 'i' angular momentum) (via an asymptotic tetrad trasnformation) to a frame where the complex dipole vanishes. We apply this procedure to such space-times which are asymptotically stationary or static, and observe that the calculations can be performed exactly, without any use of the approximation schemes which must be employed in general. In particular, we are able to exactly calculate complex center of mass and charge world-lines for such space-times, and - as a special case - when these two complex world-lines coincide, we recover the Dirac value of the gyromagnetic ratio.Comment: 11 page
    corecore