89 research outputs found

    Stationary Einstein-Maxwell fields in arbitrary dimensions

    Full text link
    The Einstein-Maxwell equations in D-dimensions admitting (D-3) commuting Killing vector fields have been investigated. The existence of the electric, magnetic and twist potentials have been proved. The system is formulated as the harmonic map coupled to gravity on three-dimensional base space generalizing the Ernst system in the four-dimensional stationary Einstein-Maxwell theory. Some classes of the new exact solutions have been provided, which include the electro-magnetic generalization of the Myers-Perry solution, which describes the rotating black hole immersed in a magnetic universe, and the static charged black ring solution.Comment: 26 page

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    SP701-A-Growing and Harvesting Switchgrass for Ethanol Production in Tennessee

    Get PDF
    Switchgrass is a warm-season perennial grass native to North America. The plant can reach heights up to 10 feet with an extensive root system. Once established, switchgrass well-managed for biomass should have a productive life of 10-20 years. Within the stand, switchgrass is an extremely strong competitor. However, it is not considered an invasive plant. Switchgrass adapts well to a variety of soil and climatic conditions. It is most productive on moderately well to well-drained soils of medium fertility and a soil pH at 5.0 or above. The high cellulosic content of switchgrass makes it a favorable feedstock for ethanol production. It is anticipated that switchgrass can yield sufficient biomass to produce approximately 500 gallons of ethanol per acre. While the Tennessee Biofuels Initiative includes a demonstration plant to make ethanol from switchgrass, the market for switchgrass as an energy crop remains limited. Producers will likely need to be located within 30 to 50 miles of a cellulosic ethanol plant. Producing switchgrass for energy generally occurs under some form of contractual arrangement with the end-user. To reap potential benefits from using switchgrass for cellulosic ethanol production, the system of production must be profitable for farmers and energy producers, as well as cost effective for consumers

    THE ORIENTATION OF CHRYSENE 1

    No full text

    A STUDY OF THE ZINCKE AND SUHL REACTION

    No full text
    corecore