37,042 research outputs found
The first-mover advantage in scientific publication
Mathematical models of the scientific citation process predict a strong
"first-mover" effect under which the first papers in a field will, essentially
regardless of content, receive citations at a rate enormously higher than
papers published later. Moreover papers are expected to retain this advantage
in perpetuity -- they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against
data from a selection of fields and in several cases find a first-mover effect
of a magnitude similar to that predicted by the theory. Were we wearing our
cynical hat today, we might say that the scientist who wants to become famous
is better off -- by a wide margin -- writing a modest paper in next year's
hottest field than an outstanding paper in this year's. On the other hand,
there are some papers, albeit only a small fraction, that buck the trend and
attract significantly more citations than theory predicts despite having
relatively late publication dates. We suggest that papers of this kind, though
they often receive comparatively few citations overall, are probably worthy of
our attention.Comment: 7 pages, 3 figure
The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V
We construct a braided version of Thompson's group V.Comment: 27 page
Interfaces (and Regional Congruence?) in Spin Glasses
We present a general theorem restricting properties of interfaces between
thermodynamic states and apply it to the spin glass excitations observed
numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3
and 4. We show that such excitations, with interface dimension smaller than d,
cannot yield regionally congruent thermodynamic states. More generally, zero
density interfaces of translation-covariant excitations cannot be pinned (by
the disorder) in any d but rather must deflect to infinity in the thermodynamic
limit. Additional consequences concerning regional congruence in spin glasses
and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter
Realistic spin glasses below eight dimensions: a highly disordered view
By connecting realistic spin glass models at low temperature to the highly
disordered model at zero temperature, we argue that ordinary Edwards-Anderson
spin glasses below eight dimensions have at most a single pair of physically
relevant pure states at nonzero low temperature. Less likely scenarios that
evade this conclusion are also discussed.Comment: 18 pages (RevTeX; 1 figure; to appear in Physical Review E
Characterizing the structure of small-world networks
We give exact relations which are valid for small-world networks (SWN's) with
a general `degree distribution', i.e the distribution of nearest-neighbor
connections. For the original SWN model, we illustrate how these exact
relations can be used to obtain approximations for the corresponding basic
probability distribution. In the limit of large system sizes and small
disorder, we use numerical studies to obtain a functional fit for this
distribution. Finally, we obtain the scaling properties for the mean-square
displacement of a random walker, which are determined by the scaling behavior
of the underlying SWN
Universality and Crossover of Directed Polymers and Growing Surfaces
We study KPZ surfaces on Euclidean lattices and directed polymers on
hierarchical lattices subject to different distributions of disorder, showing
that universality holds, at odds with recent results on Euclidean lattices.
Moreover, we find the presence of a slow (power-law) crossover toward the
universal values of the exponents and verify that the exponent governing such
crossover is universal too. In the limit of a 1+epsilon dimensional system we
obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let
Clustering and preferential attachment in growing networks
We study empirically the time evolution of scientific collaboration networks
in physics and biology. In these networks, two scientists are considered
connected if they have coauthored one or more papers together. We show that the
probability of scientists collaborating increases with the number of other
collaborators they have in common, and that the probability of a particular
scientist acquiring new collaborators increases with the number of his or her
past collaborators. These results provide experimental evidence in favor of
previously conjectured mechanisms for clustering and power-law degree
distributions in networks.Comment: 13 pages, 2 figure
Cost/benefit analysis for the Operational Applications of Satellite Snowcover Observations (OASSO)
The author has identified the following significant results. The total cost associated with satellite snow cover area measurement (SATSCAM) in the Colorado ASVT was 493k. The estimated total benefits to hydroeletric energy production is 38m, with the Lower Colorado region receiving the largest per acre benefit and the Pacific Northwest receiving the lowest
Continuous macroscopic limit of a discrete stochastic model for interaction of living cells
In the development of multiscale biological models it is crucial to establish
a connection between discrete microscopic or mesoscopic stochastic models and
macroscopic continuous descriptions based on cellular density. In this paper a
continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded
volume is derived, describing cells moving in a medium and reacting to each
other through both direct contact and long range chemotaxis. The continuous
macroscopic model is obtained as a Fokker-Planck equation describing evolution
of the cell probability density function. All coefficients of the general
macroscopic model are derived from parameters of the CPM and a very good
agreement is demonstrated between CPM Monte Carlo simulations and numerical
solution of the macroscopic model. It is also shown that in the absence of
contact cell-cell interactions, the obtained model reduces to the classical
macroscopic Keller-Segel model. General multiscale approach is demonstrated by
simulating spongy bone formation from loosely packed mesenchyme via the
intramembranous route suggesting that self-organizing physical mechanisms can
account for this developmental process.Comment: 4 pages, 3 figure
- …