769 research outputs found
Line Graphs of Weighted Networks for Overlapping Communities
In this paper, we develop the idea to partition the edges of a weighted graph
in order to uncover overlapping communities of its nodes. Our approach is based
on the construction of different types of weighted line graphs, i.e. graphs
whose nodes are the links of the original graph, that encapsulate differently
the relations between the edges. Weighted line graphs are argued to provide an
alternative, valuable representation of the system's topology, and are shown to
have important applications in community detection, as the usual node partition
of a line graph naturally leads to an edge partition of the original graph.
This identification allows us to use traditional partitioning methods in order
to address the long-standing problem of the detection of overlapping
communities. We apply it to the analysis of different social and geographical
networks.Comment: 8 Pages. New title and text revisions to emphasise differences from
earlier paper
Space as a low-temperature regime of graphs
I define a statistical model of graphs in which 2-dimensional spaces arise at
low temperature. The configurations are given by graphs with a fixed number of
edges and the Hamiltonian is a simple, local function of the graphs.
Simulations show that there is a transition between a low-temperature regime in
which the graphs form triangulations of 2-dimensional surfaces and a
high-temperature regime, where the surfaces disappear. I use data for the
specific heat and other observables to discuss whether this is a phase
transition. The surface states are analyzed with regard to topology and
defects.Comment: 22 pages, 12 figures; v3: published version; J.Stat.Phys. 201
Percolation on two- and three-dimensional lattices
In this work we apply a highly efficient Monte Carlo algorithm recently
proposed by Newman and Ziff to treat percolation problems. The site and bond
percolation are studied on a number of lattices in two and three dimensions.
Quite good results for the wrapping probabilities, correlation length critical
exponent and critical concentration are obtained for the square, simple cubic,
HCP and hexagonal lattices by using relatively small systems. We also confirm
the universal aspect of the wrapping probabilities regarding site and bond
dilution.Comment: 15 pages, 6 figures, 3 table
The Strategic Exploitation of Limited Information and Opportunity in Networked Markets
This paper studies the effect of constraining interactions within a market. A model is analysed in which boundedly rational agents trade with and gather information from their neighbours within a trade network. It is demonstrated that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree of connectivity within the market. Where traders differ in their number of potential trading partners, well-connected traders are found to benefit from aggressive trading behaviour.Where information propagation is constrained by the topology of the trade network, connectedness affects the nature of the strategies employed
Properties of the random field Ising model in a transverse magnetic field
We consider the effect of a random longitudinal field on the Ising model in a
transverse magnetic field. For spatial dimension , there is at low
strength of randomness and transverse field, a phase with true long range order
which is destroyed at higher values of the randomness or transverse field. The
properties of the quantum phase transition at zero temperature are controlled
by a fixed point with no quantum fluctuations. This fixed point also controls
the classical finite temperature phase transition in this model. Many critical
properties of the quantum transition are therefore identical to those of the
classical transition. In particular, we argue that the dynamical scaling is
activated, i.e, the logarithm of the diverging time scale rises as a power of
the diverging length scale
Cosolvent flushing for the remediation of PAHs from former manufactured gas plants
Cosolvent flushing is a technique that has been proposed for the removal of hydrophobic organic contaminants in the subsurface. Cosolvents have been shown to dramatically increase the solubility of such compounds compared to the aqueous solubility; however, limited data are available on the effectiveness of cosolvents for field-contaminated media. In this work, we examine cosolvent flushing for the removal of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured gas plant (FMGP). Batch studies confirmed that the relationship between the soil-cosolvent partitioning coefficient (Ki) and the volume fraction of cosolvent (fc) followed a standard log-linear equation. Using methanol at an fc of 0.95, column studies were conducted at varying length scales, ranging from 11.9 to 110 cm. Removal of PAH compounds was determined as a function of pore volumes (PVs) of cosolvent flushed. Despite using a high fc, rate and chromatographic effects were observed in all the columns. PAH effluent concentrations were modeled using a common two-site sorption model. Model fits were improved by using MeOH breakthrough curves to determine fitted dispersion coefficients. Fitted mass-transfer rates were two to three orders of magnitude lower than predicted values based on published data using artificially contaminated sands
Mean first-passage time for random walks on undirected networks
In this paper, by using two different techniques we derive an explicit
formula for the mean first-passage time (MFPT) between any pair of nodes on a
general undirected network, which is expressed in terms of eigenvalues and
eigenvectors of an associated matrix similar to the transition matrix. We then
apply the formula to derive a lower bound for the MFPT to arrive at a given
node with the starting point chosen from the stationary distribution over the
set of nodes. We show that for a correlated scale-free network of size with
a degree distribution , the scaling of the lower bound is
. Also, we provide a simple derivation for an eigentime
identity. Our work leads to a comprehensive understanding of recent results
about random walks on complex networks, especially on scale-free networks.Comment: 7 pages, no figures; definitive version published in European
Physical Journal
General Requirements on Matter Power Spectrum Predictions for Cosmology with Weak Lensing Tomography
Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure
weak lensing shear correlations with unprecedented precision, constraining the
dark energy equation of state at the percent level. Reliance on
photometrically-determined redshifts constitutes a major source of uncertainty
for these surveys. Additionally, interpreting the weak lensing signal requires
a detailed understanding of the nonlinear physics of gravitational collapse. We
present a new analysis of the stringent calibration requirements for weak
lensing analyses of future imaging surveys that addresses both photo-z
uncertainty and errors in the calibration of the matter power spectrum. We find
that when photo-z uncertainty is taken into account the requirements on the
level of precision in the prediction for the matter power spectrum are more
stringent than previously thought. Including degree-scale galaxy clustering
statistics in a joint analysis with weak lensing not only strengthens the
survey's constraining power by ~20%, but can also have a profound impact on the
calibration demands, decreasing the degradation in dark energy constraints with
matter power spectrum uncertainty by a factor of 2-5. Similarly, using galaxy
clustering information significantly relaxes the demands on photo-z
calibration. We compare these calibration requirements to the contemporary
state-of-the-art in photometric redshift estimation and predictions of the
power spectrum and suggest strategies to utilize forthcoming data optimally.Comment: 3 new figures; new section added on multipole-dependence of
calibration requirements; references added; version accepted by JCA
Critical exponents and equation of state of the three-dimensional Heisenberg universality class
We improve the theoretical estimates of the critical exponents for the
three-dimensional Heisenberg universality class. We find gamma=1.3960(9),
nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and
delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with
suppressed leading scaling corrections. Our results are obtained by combining
Monte Carlo simulations based on finite-size scaling methods and
high-temperature expansions. The critical exponents are computed from
high-temperature expansions specialized to the phi^4 improved model. By the
same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by
means of approximate parametric representations, obtaining the equation of
state in the whole critical region. We also determine a number of universal
amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
The role of the European Society of Human Genetics in delivering genomic education
The European Society of Human Genetics (ESHG) was founded in 1967 as a professional organisation for members working in genetics in clinical practice, research and education. The Society seeks the integration of scientific research and its implementation into clinical practice and the education of specialists and the public in all areas of medical and human genetics. The Society works to do this through many approaches, including educational sessions at the annual conference; training courses in general and specialist areas of genetics; an online resource of educational materials (EuroGEMS); and a mentorship scheme. The ESHG Education Committee is implementing new approaches to expand the reach of its educational activities and portfolio. With changes in technology, appreciation of the utility of genomics in healthcare and the public's and patients' increased awareness of the role of genomics, this review will summarise how the ESHG is adapting to deliver innovative educational activity.Molecular Technology and Informatics for Personalised Medicine and Healt
- …