8 research outputs found

    Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury

    Get PDF
    In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury

    Need for more evidence in the prevention and management of perinatal asphyxia and neonatal encephalopathy in low and middle-income countries: A call for action

    No full text
    Although low- and middle-income countries (LMICs) shoulder 90 % of the neonatal encephalopathy (NE) burden, there is very little evidence base for prevention or management of this condition in these settings. A variety of antenatal factors including socio-economic deprivation, undernutrition and sub optimal antenatal and intrapartum care increase the risk of NE, although little is known about the underlying mechanisms. Implementing interventions based on the evidence from high-income countries to LMICs, may cause more harm than benefit as shown by the increased mortality and lack of neuroprotection with cooling therapy in the hypothermia for moderate or severe NE in low and middle-income countries (HELIX) trial. Pooled data from pilot trials suggest that erythropoietin monotherapy reduces death and disability in LMICs, but this needs further evaluation in clinical trials. Careful attention to supportive care, including avoiding hyperoxia, hypocarbia, hypoglycemia, and hyperthermia, are likely to improve outcomes until specific neuroprotective or neurorestorative therapies available

    Neuroimaging in the term newborn with neonatal encephalopathy

    No full text
    Neuroimaging is widely used to aid in the diagnosis and clinical management of neonates with neonatal encephalopathy (NE). Yet, despite widespread use clinically, there are few published guidelines on neuroimaging for neonates with NE. This review outlines the primary patterns of brain injury associated with hypoxic-ischemic injury in neonates with NE and their frequency, associated neuropathological features, and risk factors. In addition, it provides an overview of neuroimaging methods, including the most widely used scoring systems used to characterize brain injury in these neonates and their utility as predictive biomarkers. Last, recommendations for neuroimaging in neonates with NE are presented

    Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures.

    No full text
    The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside

    Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates.

    No full text
    Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. IMPACT: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication. For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury. Continuous multimodal monitoring as well as monitoring of sleep, sleep-wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care
    corecore