85 research outputs found

    Drastic Reduction of Shot Noise in Semiconductor Superlattices

    Full text link
    We have found experimentally that the shot noise of the tunneling current II through an undoped semiconductor superlattice is reduced with respect to the Poissonian noise value 2eI2eI, and that the noise approaches 1/3 of that value in superlattices whose quantum wells are strongly coupled. On the other hand, when the coupling is weak or when a strong electric field is applied to the superlattice the noise becomes Poissonian. Although our results are qualitatively consistent with existing theories for one-dimensional mulitple barriers, the theories cannot account for the dependence of the noise on superlattice parameters that we have observed.Comment: 4 Pages, 3Figure

    Visualization of defect-induced excitonic properties of the edges and grain boundaries in synthesized monolayer molybdenum disulfide

    Full text link
    Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) are attractive materials for next generation nanoscale optoelectronic applications. Understanding nanoscale optical behavior of the edges and grain boundaries of synthetically grown TMDCs is vital for optimizing their optoelectronic properties. Elucidating the nanoscale optical properties of 2D materials through far-field optical microscopy requires a diffraction-limited optical beam diameter sub-micron in size. Here we present our experimental work on spatial photoluminescence (PL) scanning of large size ( 50\geq 50 microns) monolayer MoS2_2 grown by chemical vapor deposition (CVD) using a diffraction limited blue laser beam spot (wavelength 405 nm) with a beam diameter as small as 200 nm allowing us to probe nanoscale excitonic phenomena which was not observed before. We have found several important features: (i) there exists a sub-micron width strip (500\sim 500 nm) along the edges that fluoresces 1000%\sim 1000 \% brighter than the region far inside; (ii) there is another brighter wide region consisting of parallel fluorescing lines ending at the corners of the zig-zag peripheral edges; (iii) there is a giant blue shifted A-excitonic peak, as large as 120\sim 120 meV, in the PL spectra from the edges. Using density functional theory calculations, we attribute this giant blue shift to the adsorption of oxygen dimers at the edges, which reduces the excitonic binding energy. Our results not only shed light on defect-induced excitonic properties, but also offer an attractive route to tailor optical properties at the TMDC edges through defect engineering.Comment: 10 pages, 4 figures in Journal of Physical Chemistry C, 201
    corecore