23 research outputs found

    Time-dependent flow of water-based CoFe2O4-Mn-ZnFe2O4 nanoparticles over a shrinking sheet with mass transfer effect in porous media

    Get PDF
    The use of hybrid nanoparticles to increase heat transfer is a favorable area of research, and therefore, numerous scientists, researchers, and scholars have expressed their appreciation for and interest in this field. Determining the dynamic role of nanofluids in the cooling of microscopic electronic gadgets, such as microchips and related devices, is also one of the fundamental tasks. With such interesting and useful applications of hybrid nanofluids in mind, the main objective is to deal with the analysis of the unsteady flow towards a shrinking sheet in a water-based hybrid ferrite nanoparticle in porous media, with heat sink/source effects. Moreover, the impact of these parameters on heat and mass transfers is also reported. Numerical results are obtained using MATLAB software. Non-unique solutions are determined for a certain shrinking strength, in addition to the unsteadiness parameter. The mass transfer and friction factor increase for the first solution due to the hybrid nanoparticles, but the heat transfer rate shows the opposite effect

    Partial Differential Equations in Applied Mathematics https://www.sciencedirect.com/journal/partial-differential-equations-in-applied- mathematics Analysis of unsteady thermo-solutal MoS2-EO Brinkman electro-conductive reactive nanofluid transport in a hybrid rotating Hall MHD generator

    Get PDF
    MHD rotating generators offer a plausible renewable energy mechanism. New designs are emerging in which nanotechnology is contributing. Such systems are increasingly deploying more complex functional fluid materials such as base fluids containing magnetic nanoparticles which constitute electromagnetic nanofluids and can be tuned to enhance efficiencies. Motivated by these developments, a mathematical model is presented for the combined effects of Hall current, heat source, chemical reaction and radiative flux on the unsteady rotating thermo-solutal magnetohydrodynamic transport of a Molybdenum disulphide (MoS2)-EO oil electroconductive Brinkman nanofluid to study the boundary layer characteristics in the vicinity of the side wall of an MHD generator system. The governing dimensional conservation equations are scaled using appropriate transformations into a system of dimensionless coupled partial differential equations. Under appropriate initial and boundary conditions, solutions are derived using the Laplace Transform Method (LTM) and complex variables. The physical impacts of the magnetic, nanoscale, thermal and species control parameters on primary and secondary velocity, temperature and concentration are visualized graphically. The judicious doping of the base fluid with MoS2 nanoparticles is shown to achieve superior thermal performance for MHD rotating energy generators

    Stability analysis of buoyancy magneto flow of hybrid nanofluid through a stretchable/shrinkable vertical sheet induced by a micropolar fluid subject to nonlinear heat sink/source

    Get PDF
    The utilization of hybrid nanofluids (HNs) to boost heat transfer is a promising area of study, and thus, numerous scientists, researchers, and academics have voiced their admiration and interest in this area. One of the main functions of nanofluids is their dynamic role in cooling small electrical devices such as microchips and associated gadgets. The major goal of this study is to perform an analysis of the buoyancy flow of a shrinking/stretching sheet, whilst considering the fascinating and practical uses of hybrid nanofluids. The influence of a nonlinear heat source/sink induced by a micropolar fluid is also inspected. Water-based alumina and copper nanoparticles are utilized to calculate the fine points of the fluid flow and the features of heat transfer. The governing equations are framed with acceptable assumptions and the required similarity transformations are used to turn the set of partial differential equations into ordinary differential equations. The bvp4c technique is used to solve the simplified equations. Dual solutions are presented for certain values of stretching/shrinking parameters as well as the mixed convective parameter. In addition, the shear stress coefficient in the first-branch solution (FBS) escalates and decelerates for the second-branch solution (SBS) with the superior impact of the magnetic parameter, the mass transpiration parameter, and the solid nanoparticles volume fraction, while the contrary behavior is seen in both (FB and SB) solutions for the larger values of the material parameter

    A novel radial basis Bayesian regularization deep neural network for the Maxwell nanofluid applied on the Buongiorno model

    No full text
    The aim of this work is to provide the numerical solutions of the fluid model by using the stochastic computing paradigms. The linear/exponential stretching sheets on magneto-rotating flow based on the Maxwell nanofluid have been provided using the Buongiorno model with the impacts of uneven heat source/sink, varying thermal conductivity and reactive species. The solutions of this transformed ordinary differential exponential stretching sheet model have been presented using a novel ‘radial basis’ (RB) activation function together with the Bayesian regularization deep neural network (BRDNN), i.e., RB-BRDNN. The deep neural network is presented into two hidden layers, while thirteen and twenty-five numbers of neurons have been used in the first and second layer. A reference dataset is proposed using the Runge-Kutta scheme for the model. The correctness of the stochastic RB-BRDNN procedure is examined through the comparison of proposed and database results, whereas minimal absolute error values provide the accuracy of the scheme. The reliability and competence of the computing RB-BRDNN solver is authenticated using the state transitions, correlation, regression, and error histograms

    Magneto-couple stress of tri-hybrid metallic oxide nanomaterials in porous media with nonlinear properties for thermal technology advancement

    No full text
    The rising industrial demand for technological advancement in improving their working fluids and thermal augmentation has prompted studies on various non-Newtonian fluids and nanofluids. These play momentous role in many engineering devices and electronics development. Therefore, this study seeks to examine the thermal performance of ternary hybridized magneto-couple stress nanofluids in permeable media with nonlinear thermofluidic properties. The dispersion of suspended cobalt ferrite CoFe2O4, titanium dioxide TiO2 and magnesium oxide MgO nanoparticles occurs in H2O conventional solvent. With isothermal energy, the tri-hybrid nanofluid is controlled by stretchy velocity, magnetic field, gravity and Ohmic heating. An invariant transmutation of the partial derivative model is offered using similarity variables. The complete solutions to the model are obtained via Chebyshev technique coupled with integrated collocation method. From the graphically presented results, it is revealed that strong heat transfer is provided by ternary CoFe2O4+Ti02+MgO nanofluids compared to CoFe2O4+Ti02 and CoFe2O4 nanofluids. Also, the nanofluid concentration volume fraction enhanced thermal distribution and performance in the system

    Numerical simulation for peristalsis of Quemada fluid: A dynamic mesh approach

    No full text
    Introduction: Flow dynamics due to the peristaltic pumping has been the topic of great interest for the researchers. But numerical and analytical analyses for the peristaltic motion are limited where flow domain is deformed real-time. Research on peristalsis has a limitation where theoretical aspects of walls motion are considered, neglecting the real time deformation of the walls.Objectives: This paper aims to propose a more reliable and accurate numerical methodology for peristaltic motions to address the above-mentioned challenge. Stream traces, velocities, and pressure drops along the tube is to be visualized more accurately.Methods: In present study a finite volume based dynamic mesh motion method is adopted to analyze the peristaltic motion of a non-Newtonian Quemada fluid in an axisymmetric channel. The walls and interior domain of the channel is dynamically deformed for a sinusoidal wave traveling on boundary.Results: Simulation of unsteady flow behavior for time t=0s to 2s and amplitude ratio Φ=0.2,0.4,and0.6. predicts fluid trapping phenomenon. Rotation of fluid particles is more prominent for higher amplitude ratios. Pressure gradient increases with increasing amplitude ratios.Conclusion: A novel dynamic mesh method is proposed for peristaltic pumping. It provides more accurate and more physical results for stream traces; pressure drops and velocities along the tube. A limited case of the study validates the theoretical and analytical results already presented in literature; hence the method is reliable

    Case study of thermal and solutal aspects on non-Newtonian Prandtl hybrid nanofluid flowing via stretchable sheet: Multiple slip solution

    No full text
    The effect of multiple slip boundary conditions is one more important physical parameter on the flow investigation and have been studied in this analysis. Further, the effect of Ohmic heating and varying chemical reaction on non-Newtonian Prandtl hybrid nanofluid with water based nanofluids to an extending of leading edge was also investigated to this current analysis. An inclined magnetic field is introduced to fluid flow to regulate the fluid stream. Hybrid nanomaterial is synthesized by the dispersion of Cu and Cofe2O4 nanoparticles in Prandtl fluid. All chemical science specifications of nanofluid are measured as constant. Due to the nanofluid particles motion, the fluid concentration is inspected underneath chemical implications. A mathematical model is developed by assuming the flow as incompressible and purely cartesian coordinate system and appropriate non-dimensional variables are introduced for problem simplifications and dimensional analysis. The scheme for semi analytical study named Homotopy Analysis Method (HAM) is implied to get solutions to the equations. The procedure is then displayed pictorially where fluid velocity, temperature and concertation against various pertinent parameters are examined. It was found that, the Concentration field profiles have been shown to deteriorate because molecule diffusivity reduces as the chemical reaction parameter rises in both cases. In order to maintain thermal balance management in tiny heat density equipment and gadgets, current research may also be helpful in enhancing the thermal efficiency of heat exchangers

    Numerical computations of blood flow through stenosed arteries via CFD tool OpenFOAM

    No full text
    This research culminates the arterial blood flow analysis through distinct stenotic regions. Four different forms of stenotic regions are woven together in present study, i.e. triangular, trapezoidal, overlapping (w-shape) and composite formations. The four reviewed stenotic formations are first time considered in such numerical analysis. The considered problem is modeled for an elliptical cross-sectional artery by means of cartesian coordinate system. The governing coupled Partial differential equations are decoded numerically over this elliptical cross-section by using free source CFD software Open-FOAM. A precisely refined and proper mesh is generated for each arterial stenotic segment. A high magnitude of flow profile with some minor disruptions is observed near the origin of stenotic sections of artery. Pressure profile also has high values near the sharp corners of stenotic regions. Some expected irregularities in the flow profile are observed near the origin of stenotic regions as it happens in most of the real-life stenosed artery blood flow problems

    2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM

    No full text
    In a magnetic field, two-dimensional (2D) mixed convection is investigated within a zigzagged trapezoidal chamber. The lower side of the trapezoidal chamber is irregular, in particular, a zigzagged wall with different zigzag numbers N. The fluid particles move in the room due to the motion of the upper wall, while the porosity-enthalpy approach represents the melting process. The thermal parameters of the fluid are enhanced by what is called a nano-encapsulated phase change material (NEPCM) consisting of polyurethane as the shell and a nonadecane as the core, while water is used as the base fluid. In order to treat the governing equations, the well-known Galerkin finite element method (GFEM) is applied. In addition, the heat transfer (HT) irreversibility and the fluid friction (FF) irreversibility are compared in terms of the average Bejan number. The main results show that the melt band curve behaves parabolically at smaller values of Reynolds number (Re) and larger values of Hartmann number (Ha). Moreover, minimizing the wave number is better in order to obtain a higher heat transfer rate
    corecore