62 research outputs found

    Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity

    Get PDF
    Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out

    Testosterone and Vascular Function in Aging

    Get PDF
    Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed

    Notch3 signaling and vascular remodeling in pulmonary arterial hypertension

    Get PDF
    Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH

    Oxidative stress: a unifying paradigm in hypertension

    Get PDF
    The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension

    Microparticles from vascular endothelial growth factor pathway inhibitor-treated cancer patients mediate endothelial cell injury

    Get PDF
    Vascular endothelial growth factor pathway inhibitors (VEGFi), used as anti-angiogenic drugs to treat cancer are associated with cardiovascular toxicities through unknown molecular mechanisms. Endothelial cell-derived microparticles (ECMPs) are biomarkers of endothelial injury and are also functionally active since they influence downstream target cell signalling and function. We questioned whether microparticle (MP) status is altered in cancer patients treated with VEGFi and whether they influence endothelial cell function associated with vascular dysfunction. Plasma MPs were isolated from cancer patients before and after treatment with VEGFi (pazopanib, sunitinib, or sorafenib). Human aortic endothelial cells (HAECs) were stimulated with isolated MPs (106 MPs/mL). Microparticle characterization was assessed by flow cytometry. Patients treated with VEGFi had significantly increased levels of plasma ECMP. Endothelial cells exposed to post-VEGFi treatment ECMPs induced an increase in pre-pro-ET-1 mRNA expression, corroborating the increase in endothelin-1 (ET-1) production in HAEC stimulated with vatalanib (VEGFi). Post-VEGFi treatment MPs increased generation of reactive oxygen species in HAEC, effects attenuated by ETA (BQ123) and ETB (BQ788) receptor blockers. VEGFi post-treatment MPs also increased phosphorylation of the inhibitory site of endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO), and increased ONOO− levels in HAEC, responses inhibited by ETB receptor blockade. Additionally, gene expression of proinflammatory mediators was increased in HAEC exposed to post-treatment MPs, effects inhibited by BQ123 and BQ788. Our findings define novel molecular mechanism involving interplay between microparticles, the ET-1 system and endothelial cell pro-inflammatory and redox signalling, which may be important in cardiovascular toxicity and hypertension associated with VEGFi anti-cancer treatment. New and noteworthy: our novel data identify MPs as biomarkers of VEGFi-induced endothelial injury and important mediators of ET-1-sensitive redox-regulated pro-inflammatory signalling in effector endothelial cells, processes that may contribute to cardiovascular toxicity in VEGFi-treated cancer patients

    Crosstalk between vascular redox and calcium signaling in hypertension involves TRPM2 (Transient Receptor Potential Melastatin 2) cation channel

    Get PDF
    Increased generation of reactive oxygen species (ROS) and altered Ca2+ handling cause vascular damage in hypertension. Mechanisms linking these systems are unclear, but TRPM2 (transient receptor potential melastatin 2) could be important because TRPM2 is a ROS sensor and a regulator of Ca2+ and Na+ transport. We hypothesized that TRPM2 is a point of cross-talk between redox and Ca2+ signaling in vascular smooth muscle cells (VSMC) and that in hypertension ROS mediated-TRPM2 activation increases [Ca2+]i through processes involving NCX (Na+/Ca2+ exchanger). VSMCs from hypertensive and normotensive individuals and isolated arteries from wild type and hypertensive mice (LinA3) were studied. Generation of superoxide anion and hydrogen peroxide (H2O2) was increased in hypertensive VSMCs, effects associated with activation of redox-sensitive PARP1 (poly [ADP-ribose] polymerase 1), a TRPM2 regulator. Ang II (angiotensin II) increased Ca2+ and Na+ influx with exaggerated responses in hypertension. These effects were attenuated by catalase-polyethylene glycol -catalase and TRPM2 inhibitors (2-APB, 8-Br-cADPR olaparib). TRPM2 siRNA decreased Ca2+ in hypertensive VSMCs. NCX inhibitors (Benzamil, KB-R7943, YM244769) normalized Ca2+ hyper-responsiveness and MLC20 phosphorylation in hypertensive VSMCs. In arteries from LinA3 mice, exaggerated agonist (U46619, Ang II, phenylephrine)-induced vasoconstriction was decreased by TRPM2 and NCX inhibitors. In conclusion, activation of ROS-dependent PARP1-regulated TRPM2 contributes to vascular Ca2+ and Na+ influx in part through NCX. We identify a novel pathway linking ROS to Ca2+ signaling through TRPM2/NCX in human VSMCs and suggest that oxidative stress-induced upregulation of this pathway may be a new player in hypertension-associated vascular dysfunction

    Vasoprotective effects of NOX4 are mediated via polymerase and transient receptor potential melastatin 2 cation channels in endothelial cells

    Get PDF
    Background: NOX4 activation has been implicated to have vasoprotective and blood pressure (BP)-lowering effects. Molecular mechanisms underlying this are unclear, but NOX4-induced regulation of the redox-sensitive Ca 2+ channel TRPM2 and effects on endothelial nitric oxide synthase (eNOS)-nitric oxide signalling may be important. Method: Wild-type and LinA3, renin-expressing hypertensive mice, were crossed with NOX4 knockout mice. Vascular function was measured by myography. Generation of superoxide (O 2- ) and hydrogen peroxide (H 2 O 2 ) were assessed by lucigenin and amplex red, respectively, and Ca 2+ influx by Cal-520 fluorescence in rat aortic endothelial cells (RAEC). Results: BP was increased in NOX4KO, LinA3 and LinA3/NOX4KO mice. This was associated with endothelial dysfunction and vascular remodelling, with exaggerated effects in NOX4KO groups. The TRPM2 activator, ADPR, improved vascular relaxation in LinA3/NOX4KO mice, an effect recapitulated by H 2 O 2 . Inhibition of PARP and TRPM2 with olaparib and 2-APB, respectively, recapitulated endothelial dysfunction in NOX4KO. In endothelial cells, Ang II increased H 2 O 2 generation and Ca 2+ influx, effects reduced by TRPM2 siRNA, TRPM2 inhibitors (8-br-cADPR, 2-APB), olaparib and GKT137831 (NOX4 inhibitor). Ang II-induced eNOS activation was blocked by NOX4 and TRPM2 siRNA, GKT137831, PEG-catalase and 8-br-cADPR. Conclusion: Our findings indicate that NOX4-induced H 2 O 2 production activates PARP/TRPM2, Ca 2+ influx, eNOS activation and nitric oxide release in endothelial cells. NOX4 deficiency impairs Ca 2+ homeostasis leading to endothelial dysfunction, an effect exacerbated in hypertension. We define a novel pathway linking endothelial NOX4/H 2 O 2 to eNOS/nitric oxide through PARP/TRPM2/Ca 2+ . This vasoprotective pathway is perturbed when NOX4 is downregulated and may have significance in conditions associated with endothelial dysfunction, including hypertension

    Notch3/Hes5 induces vascular dysfunction in hypoxia-induced pulmonary hypertension through ER stress and redox-sensitive pathways

    Get PDF
    BACKGROUND: Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS: Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS: Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS: Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH
    corecore