7 research outputs found

    Bifidobacterium lactis in Treatment of Children with Acute Diarrhea. A Randomized Double Blind Controlled Trial

    Get PDF
    BACKGROUND: Probiotics are becoming increasingly popular treatment for children diarrhea. Although there are several probiotic strains potentially useful, researches were often limited to certain strains.AIM: To test Bifidobacterium lactis on morbidity of acute diarrhea in children less than 2 years.SUBJECTS AND METHODS: A randomized double-blind controlled clinical trial was conducted in 50 children (1 - 23 months) admitted with acute diarrhea to the Pediatric Hospital, Cairo University and were randomly assigned to receive in addition to usual treatment of diarrhea according to WHO guidelines; one of two treatments either milk formula non-supplemented (n = 25) or supplemented (n = 25) with Bifidobacterium lactis 14.5 x 106 CFU/100 ml daily for one week. Primary outcomes were frequency and duration of diarrhea and hospital stay. Secondary outcomes were duration of fever and vomiting episodes. Safety and tolerance were also recorded.RESULTS: On admission, patients’ characteristics of both groups (50 cases) were similar. For children who received the probiotics for one week; mean duration of diarrhoea was shorter than in controls (3.12 ± 0.92 vs. 4.10 ± 0.94 days) (P = 0.02), number of motions per day was less than in controls (3.96 ± 0.62 vs. 4.46 ± 0.85) (P = 0.04) and discharge from hospital <2 days was more frequent than in controls (72% vs. 44%) (P = 0.048). There was no effect on fever (P = 0.63) or vomiting (P = 0.54).CONCLUSION: Bifidobacterium lactis probiotics in supplemented milk formula decreased significantly frequency, duration of diarrhea, and hospital stay than usual treatment alone in children with acute diarrhea. Additional researches on other uncommon local probiotic species should be encouraged

    Identification of a structural element of the hepatitis C virus minus strand RNA involved in the initiation of RNA synthesis

    Get PDF
    The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells

    Study of RNA synthesis of hepatitis C virus in vitro and in cells of hepatocarcinoma

    No full text
    La polymérase NS5B du virus de l’hépatite C (VHC) porte une activité ARN polymérase ARN-dépendante essentielle pour la réplication de l'ARN génomique viral. Cette réplication implique la synthèse d'un intermédiaire de réplication de polarité négative. In vitro et probablement in vivo, la NS5B initie la synthèse d'ARN par un mécanisme de novo qui nécessite des interactions spécifiques entre la polymérase virale et des éléments des ARN viraux. Dans une première partie nous avons étudié le rôle du GTP et d’un domaine C-terminal nommé linker de la polymérase. Nos résultats démontrent que des concentrations élevées de GTP sont nécessaires pour la transition de l'initiation à l'élongation de la synthèse de l'ARN. Des mutations dans le linker à la position 556 ne modifient pas la concentration de GTP nécessaire pour la transition. Toutefois, l'initiation de la synthèse d'ARN est augmentée par la mutation S556K. Une analyse structurale menée en parallèle suggère une implication directe du linker dans l'initiation de novo de la synthèse de l'ARN. Dans les deuxièmes et troisièmes parties, nous avons étudié le rôle de motifs ARN dans la traduction et la synthèse de l’'ARN du VHC. Nous avons démontré que la tige boucle SL-E1 formée par la région entre les nt 177 et 222 de l'extrémité 3' de l’ARN (-) est importante pour la synthèse d'ARN in vitro par la NS5B recombinante et dans les cellules Huh7 exprimant le complexe de réplication (RC) du VHC. SL-E1 est impliquée dans l’initiation de la synthèse d’ARN, au moins in vitro. Nous avons également étudié le rôle des tiges boucles SLV et SLVI du gène core. Nos données n'ont pas montré de rôle évident de ces séquences ou de leur complément dans la synthèse de l'ARN in vitro par la NS5B recombinante et en culture cellulaire par le RC du VHC. Nous avons confirmé leur effet négatif sur la traduction IRES dépendante par interaction ARN-ARN longue distance entre SL-VI et le 5'UTR et démontré que le miR122 ne peut pas empêcher cet interaction. Par contre, la présence de SL-VI prévient l’inhibition de la traduction induite par l’interaction entre le domaine III de l’IRES et la tige boucle 5BSL3.2 en 3’ du génome. Ces résultats démontrent la complexité des interactions ARN/ARN et ARN/protéines dans la régulation de la réplication virale.The hepatitis C virus (HCV) NS5B protein displays a RNA-dependent RNA polymerase activity essential for replication of the viral RNA genome. This replication involves the synthesis of a replication intermediate of negative polarity. In vitro and likely in vivo, the NS5B initiates RNA synthesis by a de novo mechanism which requires specific interactions between the polymerase and viral RNA elements. In the first part of results, we described a combined structural and functional analysis of HCV-NS5B to study the role of a C-terminal segment (termed linker) and of GTP in RNA synthesis. Our results demonstrated that high GTP concentrations are necessary for the transition from the initiation to the elongation of RNA synthesis, and that linker mutations at position S556 did not modify the GTP requirement of NS5B for this transition. However, the initiation of RNA synthesis was greatly enhanced by a S556K mutation. These results together with a structural analysis point to the direct involvement of the linker in the de novo initiation of RNA synthesis. In the second and third parts of results, we studied the role of RNA elements in RNA synthesis. We demonstrated that the SL-E1 stem–loop formed by nucleotides 177–222 from the 3’-end of the HCV (-) RNA is important for RNA synthesis both in vitro by the recombinant NS5B and in Huh7 cells by HCV replication complex (RC). We also showed that SL-E1 is involved in initiation of RNA synthesis, at least in vitro. Then we studied the role of other viral RNA elements in core coding sequences (SLV and SLVI stem loops) and the involvement of the microRNA miR122 in RNA translation and RNA synthesis. For SLV and SLVI, our data did not show any clear role of these core-coding sequences or of their complement in the (-) RNA in RNA synthesis both in vitro by the recombinant NS5B and in cell culture by HCV-RC. We confirmed their negative effect on HCV-IRES translation through long range RNA-RNA interaction between SL-VI sequences and the 5’UTR and demonstrated that miR122 cannot disrupted this interaction and switches the region to an open conformation. Conversely, our data indicated that the SL-VI domain can counteract the negative effect of the interaction between the domain III of IRES and the 5BSL3.2 stem loop localized at the 3’end of the genome. These results point to the complexity of RNA/RNA and RNA/proteins interactions in the HCV replication cycle

    Etude de la synthèse de l'ARN du virus de l'hépatite C in vitro et dans des cellules d’hépatocarcinomes

    No full text
    La polymérase NS5B du virus de l’hépatite C (VHC) porte une activité ARN polymérase ARN-dépendante essentielle pour la réplication de l'ARN génomique viral. Cette réplication implique la synthèse d'un intermédiaire de réplication de polarité négative. In vitro et probablement in vivo, la NS5B initie la synthèse d'ARN par un mécanisme de novo qui nécessite des interactions spécifiques entre la polymérase virale et des éléments des ARN viraux. Dans une première partie nous avons étudié le rôle du GTP et d’un domaine C-terminal nommé linker de la polymérase. Nos résultats démontrent que des concentrations élevées de GTP sont nécessaires pour la transition de l'initiation à l'élongation de la synthèse de l'ARN. Des mutations dans le linker à la position 556 ne modifient pas la concentration de GTP nécessaire pour la transition. Toutefois, l'initiation de la synthèse d'ARN est augmentée par la mutation S556K. Une analyse structurale menée en parallèle suggère une implication directe du linker dans l'initiation de novo de la synthèse de l'ARN. Dans les deuxièmes et troisièmes parties, nous avons étudié le rôle de motifs ARN dans la traduction et la synthèse de l’'ARN du VHC. Nous avons démontré que la tige boucle SL-E1 formée par la région entre les nt 177 et 222 de l'extrémité 3' de l’ARN (-) est importante pour la synthèse d'ARN in vitro par la NS5B recombinante et dans les cellules Huh7 exprimant le complexe de réplication (RC) du VHC. SL-E1 est impliquée dans l’initiation de la synthèse d’ARN, au moins in vitro. Nous avons également étudié le rôle des tiges boucles SLV et SLVI du gène core. Nos données n'ont pas montré de rôle évident de ces séquences ou de leur complément dans la synthèse de l'ARN in vitro par la NS5B recombinante et en culture cellulaire par le RC du VHC. Nous avons confirmé leur effet négatif sur la traduction IRES dépendante par interaction ARN-ARN longue distance entre SL-VI et le 5'UTR et démontré que le miR122 ne peut pas empêcher cet interaction. Par contre, la présence de SL-VI prévient l’inhibition de la traduction induite par l’interaction entre le domaine III de l’IRES et la tige boucle 5BSL3.2 en 3’ du génome. Ces résultats démontrent la complexité des interactions ARN/ARN et ARN/protéines dans la régulation de la réplication virale.The hepatitis C virus (HCV) NS5B protein displays a RNA-dependent RNA polymerase activity essential for replication of the viral RNA genome. This replication involves the synthesis of a replication intermediate of negative polarity. In vitro and likely in vivo, the NS5B initiates RNA synthesis by a de novo mechanism which requires specific interactions between the polymerase and viral RNA elements. In the first part of results, we described a combined structural and functional analysis of HCV-NS5B to study the role of a C-terminal segment (termed linker) and of GTP in RNA synthesis. Our results demonstrated that high GTP concentrations are necessary for the transition from the initiation to the elongation of RNA synthesis, and that linker mutations at position S556 did not modify the GTP requirement of NS5B for this transition. However, the initiation of RNA synthesis was greatly enhanced by a S556K mutation. These results together with a structural analysis point to the direct involvement of the linker in the de novo initiation of RNA synthesis. In the second and third parts of results, we studied the role of RNA elements in RNA synthesis. We demonstrated that the SL-E1 stem–loop formed by nucleotides 177–222 from the 3’-end of the HCV (-) RNA is important for RNA synthesis both in vitro by the recombinant NS5B and in Huh7 cells by HCV replication complex (RC). We also showed that SL-E1 is involved in initiation of RNA synthesis, at least in vitro. Then we studied the role of other viral RNA elements in core coding sequences (SLV and SLVI stem loops) and the involvement of the microRNA miR122 in RNA translation and RNA synthesis. For SLV and SLVI, our data did not show any clear role of these core-coding sequences or of their complement in the (-) RNA in RNA synthesis both in vitro by the recombinant NS5B and in cell culture by HCV-RC. We confirmed their negative effect on HCV-IRES translation through long range RNA-RNA interaction between SL-VI sequences and the 5’UTR and demonstrated that miR122 cannot disrupted this interaction and switches the region to an open conformation. Conversely, our data indicated that the SL-VI domain can counteract the negative effect of the interaction between the domain III of IRES and the 5BSL3.2 stem loop localized at the 3’end of the genome. These results point to the complexity of RNA/RNA and RNA/proteins interactions in the HCV replication cycle

    Lysinibacillus Isolate MK212927: A Natural Producer of Allylamine Antifungal ‘Terbinafine’

    No full text
    Resistance to antifungal agents represents a major clinical challenge, leading to high morbidity and mortality rates, especially in immunocompromised patients. In this study, we screened soil bacterial isolates for the capability of producing metabolites with antifungal activities via the cross-streak and agar cup-plate methods. One isolate, coded S6, showed observable antifungal activity against Candida (C.) albicans ATCC 10231 and Aspergillus (A.) niger clinical isolate. This strain was identified using a combined approach of phenotypic and molecular techniques as Lysinibacillus sp. MK212927. The purified metabolite displayed fungicidal activity, reserved its activity in a relatively wide range of temperatures (up to 60 °C) and pH values (6–7.8) and was stable in the presence of various enzymes and detergents. As compared to fluconazole, miconazole and Lamisil, the minimum inhibitory concentration of the metabolite that showed 90% inhibition of the growth (MIC90) was equivalent to that of Lamisil, half of miconazole and one fourth of fluconazole. Using different spectroscopic techniques such as FTIR, UV spectroscopy, 1D NMR and 2D NMR techniques, the purified metabolite was identified as terbinafine, an allylamine antifungal agent. It is deemed necessary to note that this is the first report of terbinafine production by Lysinibacillus sp. MK212927, a fast-growing microbial source, with relatively high yield and that is subject to potential optimization for industrial production capabilities

    Experimental and Molecular Docking Studies of Cyclic Diphenyl Phosphonates as DNA Gyrase Inhibitors for Fluoroquinolone-Resistant Pathogens

    No full text
    DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1a–e and 2a–e) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (–9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity
    corecore