332 research outputs found

    Translational and rotational dynamics of a large buoyant sphere in turbulence

    Get PDF
    We report experimental measurements of the translational and rotational dynamics of a large buoyant sphere in isotropic turbulence. We introduce an efficient method to simultaneously determine the position and (absolute) orientation of a spherical body from visual observation. The method employs a minimization algorithm to obtain the orientation from the 2D projection of a specific pattern drawn onto the surface of the sphere. This has the advantages that it does not require a database of reference images, is easily scalable using parallel processing, and enables accurate absolute orientation reference. Analysis of the sphere’s translational dynamics reveals clear differences between the streamwise and transverse directions. The translational autocorrelations and PDFs provide evidence for periodicity in the particle’s dynamics even under turbulent conditions. The angular autocorrelations show weak periodicity. The angular accelerations exhibit wide tails, however without a directional dependence

    The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics

    Get PDF
    Biomaterial-related infection of joint replacements is the second most common cause of implant failure, with serious consequences. Chronically infected replacements cannot be treated without removal of the implant, as the bio film mode of growth protects the bacteria against antibiotics. This review discusses bio film formation on joint replacements and the important clinical phenomenon of small-colony variants (SCVs). These slow-growing phenotypic variants often remain undetected or are misdiagnosed using hospital microbiological analyses due to their unusual morphological appearance and biochemical reactions. In addition, SCVs make the infection difficult to eradicate. They often lead to recurrence since they respond poorly to standard antibiotic treatment and can sometimes survive intracellularly

    Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy

    Get PDF
    BACKGROUND: Around about 1970, a gentamicin-loaded poly (methylmethacrylate) (PMMA) bone cement brand (Refobacin Palacos R) was introduced to control infection in joint arthroplasties. In 2005, this brand was replaced by two gentamicin-loaded follow-up brands, Refobacin Bone Cement R and Palacos R + G. In addition, another gentamicin-loaded cement brand, SmartSet GHV, was introduced in Europe in 2003. In the present study, we investigated differences in gentamicin release and the antibacterial efficacy of the eluent between these four cement brands. METHODS: 200 μm-wide gaps were made in samples of each cement and filled with buffer in order to measure the gentamicin release. Release kinetics were related to bone cement powder particle characteristics and wettabilities of the cement surfaces. Gaps were also inoculated with bacteria isolated from infected prostheses for 24 h and their survival determined. Gentamicin release and bacterial survival were statistically analysed using the Student's t-test. RESULTS: All three Palacos variants showed equal burst releases but each of the successor Palacos cements showed significantly higher sustained releases. SmartSet GHV showed a significantly higher burst release, while its sustained release was comparable with original Palacos. A gentamicin-sensitive bacterium did not survive in the high gentamicin concentrations in the interfacial gaps, while a gentamicin-resistant strain did, regardless of the type of cement used. Survival was independent of the level of burst release by the bone cement. CONCLUSIONS: Although marketed as the original gentamicin-loaded Palacos cement, orthopaedic surgeons should be aware that the successor cements do not appear to have the same release characteristics as the original one. Overall, high gentamicin concentrations were reached inside our prosthesis-related interfacial gap model. These concentrations may be expected to effectively decontaminate the prosthesis-related interfacial gap directly after implantation, provided that these bacteria are sensitive for gentamicin

    Flux-normalized elastodynamic wavefield decomposition using only particle velocity recordings

    Full text link
    We present a new approach to apply wavefield decomposition, illustrated for an energy flux-normalized elastodynamic case. We start by considering a situation where two horizontal boreholes are closely separated from each other. By recording only the particle velocities at both depth levels (for example with conventional 3-component geophones) and expressing the one-way wavefields at one depth level in terms of the fields at the other depth level, an inverse problem can be formulated and solved. This new approach of multi-depth level(MDL) wavefield decomposition is illustrated with a synthetic 2D finite difference example, showing correct one-way wavefield retrieval. We then modify the methodology for a special case with a single receiver array just below a free surface, where the problem is naturally constrained by the (Dirichlet) boundary condition at the free-surface. Again, it is shown that correct elastodynamic wavefield decomposition takes place, for both P- and S-waves

    Conditional linearizability criteria for a system of third-order ordinary differential equations

    Full text link
    We provide linearizability criteria for a class of systems of third-order ordinary differential equations (ODEs) that is cubically semi-linear in the first derivative, by differentiating a system of second-order quadratically semi-linear ODEs and using the original system to replace the second derivative. The procedure developed splits into two cases, those where the coefficients are constant and those where they are variables. Both cases are discussed and examples given

    Concepts for increasing gentamicin release from handmade bone cement beads

    Get PDF
    Background and purpose Commercial gentamicin-loaded bone cement beads (Septopal) constitute an effective delivery system for local antibiotic therapy. These beads are not available in all parts of the world, and are too expensive for frequent use in others. Thus, orthopedic surgeons worldwide make antibiotic-loaded beads themselves. However, these beads are usually not as effective as the commercial beads because of inadequate release kinetics. Our purpose was to develop a simple, cheap, and effective formulation to prepare gentamicin-loaded beads with release properties and antibacterial efficacy similar to the commercially ones. Methods Acrylic beads were prepared with variable monomer content: 100% (500 μL/g polymer), 75%, and 50% to increase gentamicin release through creation of a less dense polymer matrix. Using the optimal monomer content, different gel-forming polymeric fillers were added to enhance the permeation of fluids into the beads. Polyvinylpyrrolidone (PVP) 17 was selected as a suitable filler; its concentration was varied and the antibiotic release and antibacterial efficacy of these beads were compared with the corresponding properties of the commercial ones. Results Gentamicin release rate and the extent of release from beads prepared with 50% monomer increased when the PVP17 content was increased. Beads with 15 w/w% PVP17 released 87% of their antibiotic content. This is substantially more than the gentamicin release from Septopal beads (59%). Acrylic beads with 15 w/w% PVP17 reduced bacterial growth by up to 93%, which is similar to the antibacterial properties of the commercial ones. Interpretation A simple, cheap, and effective formulation and preparation process has been described for hand-made gentamicin-releasing acrylic beads, with better release kinetics and with antibacterial efficacy similar to that of the commercial ones

    A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis

    Get PDF
    Background and purpose Many investigations on biodegradable materials acting as an antibiotic carrier for local drug delivery are based on poly(lactide). However, the use of poly(lactide) implants in bone has been disputed because of poor bone regeneration at the site of implantation. Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polymer that does not produce acidic degradation products. We explored the suitability of PTMC as an antibiotic releasing polymer for the local treatment of osteomyelitis
    • …
    corecore