5 research outputs found

    Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses

    Get PDF
    Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is oftenassociated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomescomposed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigenspecificTreg responses. We hypothesized that altering the rigidity of these liposomes while maintaining theirsize and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes isaffected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part bythe presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL(1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa),DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG(494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-deriveddendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation betweenliposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responsesin vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measureliposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system

    Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses

    Get PDF
    Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is oftenassociated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomescomposed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigenspecificTreg responses. We hypothesized that altering the rigidity of these liposomes while maintaining theirsize and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes isaffected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part bythe presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL(1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa),DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG(494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-deriveddendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation betweenliposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responsesin vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measureliposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system

    Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles

    Get PDF
    Clearance of nanoparticles (NPs) after intravenous injection - mainly by the liver - is a critical barrier for the clinical translation of nanomaterials. Physicochemical properties of NPs are known to influence their distribution through cell-specific interactions; however, the molecular mechanisms responsible for liver cellular NP uptake are poorly understood. Liver sinusoidal endothelial cells and Kupffer cells are critical participants in this clearance process. Here we use a zebrafish model for liver-NP interaction to identify the endothelial scavenger receptor Stabilin-1 as a non-redundant receptor for the clearance of small anionic NPs. Furthermore, we show that physiologically, Stabilin-1 is required for the removal of bacterial lipopolysaccharide (LPS/endotoxin) from circulation and that Stabilin-1 cooperates with its homolog Stabilin-2 in the clearance of larger (~100 nm) anionic NPs. Our findings allow optimization of anionic nanomedicine biodistribution and targeting therapies that use Stabilin-1 and -2 for liver endothelium-specific delivery.Drug Delivery Technolog

    Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses

    Get PDF
    Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is oftenassociated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomescomposed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigenspecificTreg responses. We hypothesized that altering the rigidity of these liposomes while maintaining theirsize and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes isaffected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part bythe presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL(1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa),DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG(494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-deriveddendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation betweenliposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responsesin vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measureliposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system.BiopharmaceuticsDrug Delivery TechnologyQuantum Matter and Optic

    Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses

    No full text
    Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes is affected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part by the presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of 4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG (494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-derived dendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation between liposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responses in vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measure liposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system
    corecore