108 research outputs found

    Angle-Resolved Photoemission Studies on Ruthenates and Iron-Based Superconductors

    Get PDF
    Thesis advisor: Ziqiang WangAngle-resloved photoemission spectroscopy (ARPES) is a powerful technique to study the electronic structure in solids. Its unique ability of resolving the energy and momentum information of electrons inside a solid provides an essential tool in measuring the electronic structure of solids. ARPES has made great contributions in the understanding of correlated system such as high-Tc superconductors and ruthenates. The Metal-insulator transition is a fundamental problem in condensed matter physics. The calcium substituted strontium ruthenate, Ca2-xSrxRuO4, provides a good platform to study the metal-insulator transition in multi-orbital systems. This system has a complex phase diagram that evolves from a p-wave superconductor to a Mott insulator. One of important projects of this thesis focuses on Ca2-xSrxRuO4 The growing evidence for coexistence of itinerant electrons and local moments in transition metals with nearly degenerate d orbitals suggests that one or more electron orbitals undergo a Mott transition while the others remain itinerant. We have observed a novel orbital selective Mott transition (OSMT) in Ca1.8Sr0.2RuO4 by ARPES. While we observed two sets of dispersing bands and Fermi surfaces (FSs) associated with the doubly-degenerate dyz and dzx orbitals, the Fermi surface associated with the dxy orbital which has a wider bandwidth is missing as a consequence of selective Mott localization. Our theoretical calculations have demonstrated that this unusual OSMT is mainly driven by the combined effects of inter-orbital carrier transfer, superlattice potentials and orbital degeneracy, whereas the bandwidth difference plays a less important role. Another important project of this thesis focuses on the recently discovered iron-pnictides superconductors. The idea of inter-FS scattering associated with the near-nesting condition has been proposed to explain the superconductivity in the pnictides. The near-nesting condition varies upon the carrier doping which shifts the chemical potential. We have performed a systematic photoemission study of the chemical potential shift as a function of doping in a pnictide system based on BaFe2As2. The experimentally determined chemical potential shift is consistent with the prediction of a rigid band shift picture by the renormalized first-principle band calculations. This leads to an electron-hole asymmetry (EHA) due to different Fermi velocities for different FS sheets, which can be calculated from the Lindhard function of susceptibility. This built-in EHA from the band structure, which is fully consistent with the experimental phase diagram, strongly supports that inter-FS scattering over the near-nesting Fermi surfaces plays a vital role in the superconductivity of the iron pnictides.Thesis (PhD) — Boston College, 2010.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Physics

    Low-Energy Surface States in the Normal State of α\alpha-PdBi2 Superconductor

    Full text link
    Topological superconductors as characterized by Majorana surface states has been actively searched for their significance in fundamental science and technological implication. The large spin-orbit coupling in Bi-Pd binaries has stimulated extensive investigations on the topological surface states in these superconducting compounds. Here we report a study of normal-state electronic structure in a centrosymmetric α\alpha-PdBi2 within density functional theory calculations. By investigating the electronic structure from the bulk to slab geometries in this system, we predict for the first time that α\alpha-PdBi2 can host orbital-dependent and asymmetric Rashba surface states near the Fermi energy. This study suggests that α\alpha-PdBi2 will be a good candidate to explore the relationship between superconductivity and topology in condensed matter physics

    Two distinct topological phases in the mixed valence compound YbB6 and its differences from SmB6

    Full text link
    We discuss the evolution of topological states and their orbital textures in the mixed valence compounds SmB6 and YbB6 within the framework of the generalized gradient approximation plus onsite Coulomb interaction (GGA+U) scheme for a wide range of values of U. In SmB6, the topological Kondo insulator (TKI) gap is found to be insensitive to the value of U, but in sharp contrast, Kondo physics in isostructural YbB6 displays a surprising sensitivity to U. In particular, as U is increased in YbB6, the correlated TKI state in the weak-coupling regime transforms into a d-p-type topological insulator phase with a band inversion between Yb-5d and B-2p orbitals in the intermediate coupling range, without closing the insulating energy gap throughout this process. Our theoretical predictions related to the TKI and non-TKI phases in SmB6 and YbB6 are in substantial accord with recent angle-resolved photoemission spectroscopy (ARPES) experiments.Comment: 6 pages, 4 figures URL: http://link.aps.org/doi/10.1103/PhysRevB.91.15515
    • …
    corecore