
Persistent link: http://hdl.handle.net/2345/1944

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2010

Copyright is held by the author, with all rights reserved, unless otherwise noted.

Angle-Resolved Photoemission
Studies on Ruthenates and Iron-Based
Superconductors

Author: Madhab Neupane

http://hdl.handle.net/2345/1944
http://escholarship.bc.edu


Boston College

The Graduate School of Arts and Sciences

Department of Physics

Angle-Resolved Photoemission Studies on

Ruthenates and Iron-Based Superconductors

a dissertation

by

Madhab Neupane

submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

December 15, 2010



c© copyright by Madhab Neupane

2010



Angle-Resolved Photoemission Studies on Ruthenates and

Iron-Based Superconductors

Madhab Neupane

Dissertation advisors: Profs. Hong Ding and Ziqiang Wang

Abstract

Angle-resloved photoemission spectroscopy (ARPES) is a powerful technique to study

the electronic structure in solids. Its unique ability of resolving the energy and mo-

mentum information of electrons inside a solid provides an essential tool in measuring

the electronic structure of solids. ARPES has made great contributions in the under-

standing of correlated system such as high-Tc superconductors and ruthenates.

The Metal-insulator transition is a fundamental problem in condensed matter

physics. The calcium substituted strontium ruthenate, Ca2−xSrxRuO4, provides a

good platform to study the metal-insulator transition in multi-orbital systems. This

system has a complex phase diagram that evolves from a p-wave superconductor to

a Mott insulator. One of important projects of this thesis focuses on Ca2−xSrxRuO4.

The growing evidence for coexistence of itinerant electrons and local moments in

transition metals with nearly degenerate d orbitals suggests that one or more electron

orbitals undergo a Mott transition while the others remain itinerant. We have ob-

served a novel orbital selective Mott transition (OSMT) in Ca1.8Sr0.2RuO4 by ARPES.

While we observed two sets of dispersing bands and Fermi surfaces (FSs) associated



with the doubly-degenerate dyz and dzx orbitals, the Fermi surface associated with

the dxy orbital which has a wider bandwidth is missing as a consequence of selective

Mott localization. Our theoretical calculations have demonstrated that this unusual

OSMT is mainly driven by the combined effects of inter-orbital carrier transfer, su-

perlattice potentials and orbital degeneracy, whereas the bandwidth difference plays

a less important role.

Another important project of this thesis focuses on the recently discovered iron-

pnictides superconductors. The idea of inter-FS scattering associated with the near-

nesting condition has been proposed to explain the superconductivity in the pnictides.

The near-nesting condition varies upon the carrier doping which shifts the chemical

potential. We have performed a systematic photoemission study of the chemical po-

tential shift as a function of doping in a pnictide system based on BaFe2As2. The

experimentally determined chemical potential shift is consistent with the prediction

of a rigid band shift picture by the renormalized first-principle band calculations.

This leads to an electron-hole asymmetry (EHA) due to different Fermi velocities for

different FS sheets, which can be calculated from the Lindhard function of suscep-

tibility. This built-in EHA from the band structure, which is fully consistent with

the experimental phase diagram, strongly supports that inter-FS scattering over the

near-nesting Fermi surfaces plays a vital role in the superconductivity of the iron

pnictides.
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Chapter 1

Introduction of ruthenates and

iron-based superconductors

The most important advances in superconductivity research over the past two decades

have been the discovery and study of superconductors in which strong electron inter-

actions or electron correlations are important to their superconductivity. Examples

includes heavy-fermion intermetallic compounds, organics, copper oxides (cuprates),

ruthenates, cobaltes and iron-pnictides. Superconductivity research has thus become

intimately related with the field of strongly correlated physics, and unconventional

superconductivity has become one of the most actively studied topics of modern-day

condensed-matter physics [1].

Supercondictivity involves the formation of a quantum condensate state by pairing

conduction electrons. The condensation may be considered as a kind of Bose-Einstein
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condensation because the pair of electrons are bosons. These boson are called as

Cooper pairs and can be in the state of either total spin S =0 (spin singlet) or 1

(spin triplet). Because of the anticommuting properties of the electron as a fermion,

the antisymmetric spin-singlet state is accompanied by a symmetric orbital wave

function (even parity) with orbital angular momentum L =0 (s wave), 2 (d wave),

etc. The symmetric spin-triplet state is accompanied by an antisymmetric orbital

wave function (odd parity) with orbital angular momentum L =1 (p wave), 3 (f

wave) etc.

This chapter presents an introduction of unconventional p-wave superconductor

(Sr2RuO4) and newly discovered iron-based superconductors.

1.1 Sr2RuO4

Sr2RuO4 is believed to be a p-wave superconductor with spin triplet superconductiv-

ity. The following gives a brief introduction of Sr2RuO4.

1.1.1 Discovery and crystal structure

Discovery of Sr2RuO4 The discovery by Bednorz and Muller (1986) of high-

temperature (high-Tc) superconductivity in copper oxides (cuprates) had a huge im-

pact on the research of superconductivity. An important ingredient for a high-Tc is

the existence of quasi-two dimensional electronic states arising from the planar CuO2

network of the layered perovskite structure. A non-cuprate perovskite superconductor
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is a good system to compare with cuprates to understand the mechanism of high Tc

superconductivity. It is interesting to note that it took eight years until the first such

noncuprate superconductor was finally found in a ruthenium oxides [2]. The super-

conducting transition temperature (∼1.5 K) is much lower than that of cuprates. The

parent compound of high-Tc cuprates are Mott insulators while Sr2RuO4 is metallic

although isovalent compound Ca2RuO4 is a Mott insulator.

Structure of Sr2RuO4 Sr2RuO4 has the K2NiF4 structure, with I4/mmm body-

centered tetragonal space-group symmetry which is shown in Fig. 1.1. It is isotructure

with the high-Tc La2−xBaxCuO4. The superconductivity is believed to occur in the

metallic RuO2 layer. A Ru ion with six neighboring oxygen form a RuO6 octahe-

dron. There is very little evidence for structural distortion in Sr2RuO4, and none

for structural phase transitions between room temperature and 100 mK. The lattice

parameters are a = 0.3862 and c =1.2722 nm.

Superconductivity of Sr2RuO4 The superconductivity of Sr2RuO4 was first dis-

covered by resistivity and susceptibility measurement in 1994 [2]. Figure. 2 shows

that Tc = 0.9 K from both resistivity and susceptibility measurements. The low

value of Tc is due to impurities and defects of samples in early stage. High quality

samples have Tc values around 1.5 K.

Evidence for p-wave superconductor There is increasing evidence that Sr2RuO4

is a p-wave superconductor. Both NMR Knight shift and spin polarized neutron scat-
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Figure 1.1: The layered perovskite structure common to ruthenate and cuprate su-

perconductor [1].
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Figure 1.2: Resistivity and ac susceptibility of early crystals of Sr2RuO4. This data

clearly show the superconducting transition [1].

tering experiment give experimental evidence for spin triplet pairing. In principle, the

spin susceptibility can be measured without the influence of Meissner effect by NMR

Knight shift. The Knight shift is the difference of the NMR frequency of a nucleus

between normal and superconducting states. The Knight shift has been measured

with dc field applied in the ab-plane by Ishida et al. [3] in high quality sample with Tc

>1.4 K. The results of Knight shift measurement are shown in Fig. 1.3(c). It is well

known that in a spin-singlet superconductor, there is a change of the Knight shift

across Tc, while in a spin-triplet superconductor, the Knight shift does not change

through Tc. The data shows that the Knight shift is temperature independent across

Tc indicating strongly spin triplet pairing.
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Figure 1.3: (a) Spin-polarized neutron-scattering results from an s-wave supercon-

ductor and (b) for Sr2RuO4 (c) The temperature dependence of Knight Shift (K)

data [1].

6



Spin triplet can be also measured from spin polarized neutron scattering by mea-

suring the spin susceptibility. The results are shown in Fig. 1.3(a) and 1.3(b). The

s-wave spin-singlet superconductor V3Si has a clear change of the spin susceptibility

while no change of spin susceptibility has been observed in Sr2RuO4. This clearly

indicates the presence of spin-triplet pairing in Sr2RuO4.

1.1.2 Normal-state properties of Sr2RuO4

The normal state properties of Sr2RuO4 are very interesting which shows the Fermi

liquid behavior at low temperature. Both quantum oscillation and ARPES observe

three Fermi surface sheets whose total volume is consistent with Luttinger theorem.

The effective mass of the quasi-particle is highly enhanced compared to other metals,

indicating strong interactions.

The resistivity is strongly anisotropic(as shown in Fig. 1.4), with low-temperature

ratios varying between 400 and 4000. At high temperature, ρc (the interplane resistiv-

ity) decreases with increasing temperature, characteristic of an incoherent conduction

mechanism. As the temperature is lowered, however, ρc goes through a broad max-

imum at approximately 130 K and then follows a metallic temperature dependence

down to Tc. The in-plane resistivity, ρab, is metallic from 300 K to low temperatures,

and below approximately 20 K, both ρab and ρc have an approximate T2 dependence

at low temperatures which is consistence with the predictions of the Fermi-liquid

theory of metals.
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Figure 1.4: Anisotropic resistivity in Sr2RuO4 [4]. The dotted line in the inset shows

the low-temperature T 2 dependence which is expected for a Fermi liquid behavior.
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Figure 1.5: The Fermi surface obtained from (a) ARPES measurement [8] and, (b)

quantum oscillation measurement [6].

The normal state specific heat of Sr2RuO4 measurement can be explained by

Fermi liquid theory. The specific heat measurement is shown in Fig. 1.6(a) in which,

below 15 K, Cp is modeled well by the expression γelT+βphT
3, with γel = 38 ± 2

mJ/molK2, and βph = 0.2 ± 0.005 mJ/molK4. No change is seen in either value

within experimental errors in an applied magnetic field of 14 T.

The typical results for the normal-state static susceptibility χ of Sr2RuO4 are

shown in Fig. 1.6(b). This data indicates the spin or Pauli term comes from the

striking isotropy of χ in the presence of a very anisotropic electronic structure.

We can summarize the properties of Sr2RuO4 as follows:

(i) The superconductivity of Sr2RuO4 condenses from a metallic state that is a

strongly two-dimentional Fermi liquid.

(ii) The Fermi surface consists of three weakly corrugated cylindrical sheets, α

9



Figure 1.6: (a) The total specific heat of Sr2RuO4 divided by temperature between

Tc and 14 K in zero field (filled squares) and an applied magnetic fields of 14 T (open

circles) applied parallel to c axis. (b) The static susceptibility of Sr2RuO4 for fields

of 1 T applied parallel to the ab plane and the c axis [1].
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(which is holelike), and β and γ (which are electronlike). It is shown in Fig. 1.5.

(iii) There is a significant quasiparticle mass enhancement.

(iv) Although the dynamical susceptibility is enhanced at q = 0, the largest peak,

due to Fermi-surface nesting, is at (0.6π, 0.6π).

Table 1.1 presents a comparison between cuprates and ruthenates.

Cuprates Ruthenates

TC ≈160 K TC ≈ 1 K

Cu 3d9 configuration Ru 4d4 configuration

Single band near EF Multiple bands near EF

Cu 3dx2−y2 - O 2p orbital near EF Ru 4dxy,yz,zx - O 2p orbitals near EF

Parent compound is Mott insulator Parent compound is a conductor

d-wave order parameter p-wave symmetry

With antiferromagnetic ordering With ferromagnetic correlation

Table 1.1: Comparison between cuprates and ruthenates

1.2 Iron-based superconductor

The discovery of the iron-based layered superconductor LaFeAs(O1−xFx) reported

by Hosono group [7] on February 23, 2008, had a great impact on researchers in

condensed-matter physics because it provided a new opportunity to investigate the

mechanism of non-BCS exotic superconductors. It is also interesting because the
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compound LaFeAs(O0.89F0.11), which contains one of the most familiar ferromagnetic

atom iron, shows superconductivity at ∼ 26 K. After this discovery, a tremendous

number of iron-based superconductors have been discovered. Generally, iron-based

superconductors can be classified as REFeAs(O1−xFx) (RE = Ce, Pr, Sm, Nd etc)

called 1111 systems, REFe2As2 (RE= Ca, Sr, Ba, Eu) called as 122 systems, AFeAs

(A = Li, Na) called 111, and FeCh (Ch = chalcogens) called 11 systems.

The superconducting state can be induced either by electron or hole doping of the

parent compounds or also by pressure. Until now, the highest Tc attained is 57.4 K

in the electron doped Ca0.4Na0.6FeAsF (1111 compound) [8], while for 122 family the

highest Tc of 38 K is reached in the hole doped Ba0.6K0.4Fe2As2 [9]. It seems that

the FeAs layers are responsible for superconductivity in these compounds because the

electronic states near the Fermi surface are dominated by contributions from Fe and

As. Extensive studies of phonon dynamics [10,11] suggest that it is unlikely that the

superconductivity in iron pnictides is due to simple electron-phonon coupling. Since

phonons play no significant role in the superconducting pair formation, it is natural

to presume that magnetism has a crucial role in the appearance of superconductivity

and consequently antiferromagnetic (AFM) spin fluctuations have been suggested as

a possible pairing mechanism. Several neutron diffraction experiments reveal that

the common feature of all the iron pnictide parent compounds is a spin density wave

(SDW) arising from long range AFM order of the Fe moments at low temperature.

We mainly focus on the 122 and 11 systems in this thesis.
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1.2.1 Crystal structure and physical properties

Crystal structure

1111: LaOFeAs (1111) crystalizes in a square lattice with Fe layers sandwiched

by two As layers (up and down), each Fe is coordinated by a As tetrahedron. Its elec-

tronic properties are dominated by the (FeAs)-triple-layers, which contribute mostly

to the electronic states around the Fermi level (EF ). The 1111 family of iron pnic-

tides crystallizes in the ZrCuSiAs-type structure (space group P4/nmm). In this

structure, two-dimensional layers of edge-sharing FeAs4/4 tetrahedra alternate with

sheets of edge-sharing OLa4/4 tetrahedra as shown in Fig. 1.7(a).

122: The 122 system which has a tetragonal ThCr2Si2-type structure of I4/nmm

space group contains practically identical edge-sharing FeAs4/4 tetrahedra, but they

are separated by RE (RE = Ca, Sr, Ba, Eu) atoms. This structure is shown in Fig. 1.7

(b).

111: 111 systems crystallize into a Cu2Sb-type tetragonal structure containing

[FeAs] layer with an average iron valency of 2+ like for 1111 and the 122 parent

compound.

11: The PbO-type α-FeSe crystal structure is shown in Fig. 1.7 (d). It has the

planar crystal sublattice consisting of edge sharing FeSe4 tetrahedra, the same as the

FeAs4 tetrahedra layers found in oxypnictides.
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Figure 1.7: Schematic crystal structure of (a) LaFeAsO [12] (b) BaFe2As2 [9] (c)

LiFeAs [13] (d) α-FeSe [14]. Each of these structures contains a square lattice of Fe

atoms at high temperatures that can distort at low temperatures. Each Fe atom is

tetrahedrally coordinated by As (a, b, c) or Se (d).
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Physical properties The following shows the physical properties of iron-based

superconductors:

Resistivity Parent compounds of iron-pnictide show an anomaly in the resistivity

at a certain temperature depending upon the compound. It is pointed out that this

anomaly is due to a structural phase transition. Typical examples of resistivity curves

for 1111 and 122 system are shown in Fig. 1.8.

Figure 1.8: Typical resistivity of (a) LaFeAsO1−xFx [7]. (b) (Ba,K)Fe2As2 [9].

Upper critical field Fig 1.9 shows a weak isotropy in the upper critical field Hc2

of hole (K) and electron (Co) doped BaFe2As2. The nearly isotropic temperature

dependence of the Hc2 values at low temperatures was attributed to a 3D Fermi

surfaces (FSs) in these compounds which is confirmed in the 122 systems by ARPES.

This is in contrast with the quasi-two- dimensional electronic structure and large

anisotropy of the cuprates.
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Figure 1.9: The weak anisotropy in the upper critical field Hc2 [15]. (a) (Ba, K)Fe2As2

(b) Ba(Co,Fe)2As2 [16].

Antiferromagnetic Order Since superconductivity in iron pnictides appears by

doping their parent compounds with charge carriers or using pressure, it is natural

to ask what is the ground state of the parent compound? Also, an anomaly in the

resistivity of the parent compounds of these materials occurs below a certain temper-

ature (in case of LaFeAsO, it is at ∼ 150 K) in addition to a small anomaly in the d.

c. magnetic susceptibility. Optical conductivity and theoretical calculations suggest

that LaFeAsO exhibits a spin-density-wave (SDW) instability that is suppressed by

doping with electrons to induce superconductivity.

The first direct evidence of SDW order in LaFeAsO came from neutron-scattering

experiments by de la Cruz et al. [17]. They showed that LaFeAsO undergoes an

abrupt structural distortion below ∼ 155 K, changing the symmetry from tetragonal

16



Figure 1.10: Antiferromagnetic ordering in (a) LaFeAsO [17] and (b) BaFe2As2 [18]

(space group P4/nmm) to monoclinic (space group P112/n) at low temperatures,

followed by a long-range SDW-type antiferromagnetic (AFM) order with a small

moment but simple magnetic structure developing below ∼ 137 K. The magnetic

structure is consistent with theoretical predictions, but the moment of 0.365 µB per

iron atom obtained here at 8 K is much smaller than the predicted values of ∼ 2.3

µB per iron atom. Later the AFM order in BaFe2As2 was also observed by a neutron

diffraction study [18]. Similarly to the 1111 system, BaFe2As2 shows tetragonal to

orthorombic structural and magnetic transitions. But the important things is that

both transitions occur simultaneously at the same temperature. These results are

summarized in Fig. 1.10.
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1.2.2 Electronic structure

The study of the electronic structure shows that the Fermi surface and band structures

of the different families of pnictides are rather generally similar. Although the field

is very recent and thus most need to be determined experimentally, one can draw a

few broad conclusions from the ARPES point of view that seem to hold for all these

systems:

1. Every systems show non-negligible renormalization effects due to electronic

correlations.

2. All systems exhibit a complex multi-sheet Fermi surface with holelike pockets

at the Brillouin zone center (Γ point) and electronlike pockets at the zone corner (M

point).

3. The superconducting gap size indicates a strong coupling regime and is Fermi

surface-sheet dependent.

4. The superconducting gaps are isotropic along each Fermi surface sheet.

5. The superconducting gap size seems related to the nesting of Γ-centered holelike

Fermi surface pockets with M-centered electronlike Fermi surface pockets, which are

connected by the antiferromagnetic wavevector.

However, apart from the common general features in their electronic structures,

many differences may exist among the different families and even in the same family

as well.

18



BaFe2As2 D. J. Singh [19] performed band structure calculations taking experi-

mental tetragonal lattice parameters at room temperature and relaxing the internal

co-ordinate of As using LDA total-energy minimization. The results using experi-

mental As co-ordiantes are shown for the purpose of comparison.

Figure 1.11: (a) Calculated band structure of BaFe2As2 for LDA values of zAs. (b)

This panel shows a zoom in near EF (c) Calculated electron density of states of

BaFe2As2 for experimental and (b) LDA (bottom) values of zAs [19]

The calculated LDA band structures and electronic density of states (DOS) are
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shown in Figs 1.11. There is a high density of states near EF which is due to the

contribution of Fe 3d states. The corresponding Fermi surfaces are shown in Fig. 1.12.

Hole like Fermi surface sheets appear at the Brillouin zone (BZ) center (called Γ point)

and electron-like FS sheets appear at the BZ corners (called M point). The hole-like

FS at the BZ center flares out at kz = 1/2 (Z point), giving a three-dimentional

nature to the Fermi surface. However, this flaring out is sensitive to the As height

zAs. In particular, it is reduced as As is moved away from the Fe plane. This is

mainly observed using the experimental value of As internal coordinate zAs = 0.3545

rather than the LDA-calculated value of zAs = 0.342.

Figure 1.12: LDA Fermi surfaces of BaFe2As2 for LDA internal coordinates [19].

The sensitivity of these calculations to the As potition appears in the DOS near

20



EF . By comparing the upper panel (c) [zAs (expt)] and lower panel (d) [zAs (LDA)]

of Fig. 1.11, we notice that the DOS N(EF .) is larger when the As height is raised

to the experimental value leading to a more magnetic state.

Figure 1.13: Calculated Fermi surface of BaFe2As2 [20].

Fig. 1.13 shows the calculated electronic structure of BaFe2As2 taken from an-

other reference [25]. These results show good agreement with those shown above

but this calculation focuses on the three-dimentional electronic structure observed in

BaFe2As2. Fig. 1.13 shows that for the kz = 0 (kz =π) plane, the size of the hole

pockets is smaller (larger) than the electron pockets, and only for the kz = π/2 plane,

the size of the two is almost equal. This suggests enhanced three dimensionality in

the electronic structure of BaFe2As2.

The band structures and Fermi surfaces of the 11-type Fe1+yTe1−xSex compounds

calculated using LDA are similar to those of the 122 and 1111-type compounds [21].

Experimental observation: Ref. [22] shows the direct observation of inner (called

α) and outer (called β) hole Fermi surfaces at the zone center (Γ point) and electron

21



(called γ) like Fermi surface at the zone corner (M point) of Ba0.6K0.4Fe2As2 using

angle-resolved photoemission spectroscopy. They have observed two superconducting

gaps with different values: a large gap around 12 meV on the α and γ Fermi surfaces

and a small gap around 6 meV on the β Fermi surface. It is also important to note

that the gaps are nodeless and nearly isotropic around their respective FS sheets as

shown in Fig. 1.14. The pairing between α and γ bands which are connected by

the (π, 0) spin-density wave vector, strongly suggests that the pairing mechanism

originates from the inter-band interactions between these two nested FS sheets.

Although Fe-based superconductors were discovered just around 2 years ago, this

allows a new path to study a high Tc superconductor. Though the study of iron-

based superconductors is in early states, rapid research works on theoretical and

experimental fonts have been performed. It is important to point out the similarities

and differences between cuprates and pnictides, which are given below:

Similarities between cuprates and pnictides

- Superconductivity with Tc exceeding 50 K

- Layered structures

- Magnetically ordered parent compounds

- Doping induces superconductivity

- Similar phase diagrams

- Magnetic resonances in the SC state

Differences between cuprates and pnictides
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Figure 1.14: Three-dimensional plot of the superconducting gap size in

Ba0.6K0.4Fe2As2 on three observed Fermi surface sheets and their temperature evolu-

tion (inset) [22].
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Cuprates Pnictides

Spin 1/2 Spin 1

Single d-orbital Multiple d-orbitals

Mott Insulator parent compound Semimetal parent compound

Magnetism near (π, π) Magnetism is at (π, 0).

d-wave (nodal quasiparticles) No nodal quasiparticles
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Chapter 2

Angle resolved photoemission

spectroscopy (ARPES)

2.1 Photoemission spectroscopy

2.1.1 History and fundamentals of photoemission

Photoemission spectroscopy is a general term which refers to all techniques based

on the photoelectric effect originally observed by Hertz [1]. In 1887, Heinrich Hertz

observed, even before the discovery of electron, that a sparkle between two electrodes

was more easily observed if the electrodes were illuminated. This was later explained

as a manifestation of the quantum nature of light by Einstein (1905) [2]. The modern

era of photoemission spectroscopy started in 1964 with the papers of Berglund and

Spicer. The first paper of Berglung and Spicer worked out what is called the three-
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step model for photo-emission, and the second one applied it to data on Cu and Ag.

At the same time, there were two papers by Gobeli et al. and Kane (1964), nearly

simultaneously, with wide spread calculations of accurate electronic structure of many

materials.

Photoemission spectroscopy (PES) can be categorized into two major sub-fields

according to the energy of the incident photons used:

(1) X-ray photoemission spectroscopy (XPS), also known as ESCA- Electron Spec-

troscopy for Chemical Analysis, uses X-rays to study core level electrons. XPS has

been widely used in physics, chemistry, biology and material science.

(2) Ultraviolet photoemission spectroscopy (UPS) uses ultraviolet photons to

study valence electrons.

In most photoemission studies, the kinetic energy of emitted electrons is measured.

The independent-electron model is adopted for the description of the electrons in a

solid before and after the emission of the electrons. The measured kinetic energy,

Ekin, and the work function, φ (typically 4-5 eV for metals), give the information of

the final energy Ef after the emission inside the sample. Then Ei, the initial energy

before the emission, can be derived. The spectrum resembles the density of occupied

electron states weighted by a smooth function that varies smoothly with energy. If an

electron energy analyzer accepts electrons within only small solid angle, the angular

dependence of measured spectra can be treated as well, leading to spectra of Ei vs

the wave vector of the initial state. This can be compared to the calculated band
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structure. High resolution ARPES spectra can be obtained by the recent improvement

of high-resolution detector and photon sources.

The schematic drawing of the energetics of the photoemission process is shown

in Figs. 1 and 2. A monochromatic light shines on a well prepared sample surface.

Then, based on the photoelectric effect, electrons in the material absorbing photons

are excited to higher energy, some of them escape out from the sample into vacuum.

An electron energy analyzer collects the outgoing electrons at a certain finite solid

angle (θ, φ), as a function of electron’s kinetic energy. In the angle-integrated mode, in

which electrons are collected from all the directions, the electron density of states are

measured. An ARPES spectrum has a direct relation with the electron’s distribution

inside the material, plus the broadening of energy levels due to resolution of the

detecting process. By changing (θ, φ), one can obtain the angular dependence of

band information of a single crystal sample and compare it to band calculations.

Only photoelectrons close to the samples’ surface (topmost layers) can escape to

the vacuum due to scattering of electron with the environment, such as electrons,

ions, photons, plasmons etc... The typical escape lenght for photoelectrons created

by 20 -100 eV photon energy is about 5 Å. Therefore, in order to learn about the bulk

electronic structure, photoemission spectroscopy experiments have to be performed

on atomically clean and well-ordered systems, which implies that fresh and flat sur-

faces have to be prepared immediately prior to the experiment in ultrahigh-vacuum

conditions. The typical pressure for PES experiment is about 10−10 to 10−11 Torr,
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and a sample’s life time is from a few hours to a few days.

When light impinges on a solid, an electron in the solid can absorb a photon and

be excited into an unoccupied state. If the photon energy is high enough, the electron

will get out of the surface and go into vacuum. This photoelectric phenomenon was

first discovered by Hertz in 1887 [1], which was explained later by A. Einstein in

1905 [2] with quantization of light. Experimentally photoelectrons are analyzed with

respect to their kinetic energy E and their momentum p. Given the energy of light and

work function, the binding energy of electrons before excitation can be determined

by:

|EB| = hν − φ− Ekin (2.1)

where hν is the incident photon energy, φ is the work function of the solid and Ekin

is the kinetic energy of photoelectrons. As shown in Figure 2.1, in the case of metals,

core levels are at high binding energies and non-dispersing, valence bands are at

low binding energies and the Fermi energy EF is at the top of valence band and

separated from vacuum by the work function φ. If an electron with a binding energy

EB absorbs a photon with energy ~ν, the electron can get excited into vacuum and

an photoelectron can be detected with a kinetic energy Ekin = ~ν − φ − EB. The

kinetic energy distribution of photoelectrons reflects the binding energy distribution

of the electrons in solids, and can reveal detailed information about the electronic

structure of solids. The electron energy distribution produced by incoming photons

and measured as a function of kinetic energy Ekin of the photoelectrons is more
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Figure 2.1: Energetics of the photoemission process [3]. Electrons with binding energy

EB absorb photons ~ν and escape into vacuum, becoming photoelectrons with kinetic

energy Ekin = ~ν − φ− EB.
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conveniently expressed in terms of the binding energy EB when one refers to the

density of states inside solids (EB = 0 at EF ) as shown in Figure 2.1. Based on the

photoelectric effect, photoemission spectroscopy(PES) was developed and has been

widely used in studying the electronic structure of solids.

Figure 2.2: Kinematic of the photoemission process within the three-step nearly-free-

electron final state model: (a) direct optical transition in the solid (the lattice supplies

the required momentum); (b) free-electron final state in vacuum; (c) corresponding

photoelectron spectrum, with a background due to the scattered electrons (EB = 0

at EF ) [8].

The photoemission process is a single coherent process and can be rigorously and

more accurately described by the one-step model [4]. In the one-step model, photon

absorption, electron removal, and electron detection are treated as a single coherent

process. In this case the Hamiltonian includes bulk, surface, and vacuum describing

the crystal, which implies that not only bulk states have to be considered, but also
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surface and evanescent states, as well as surface resonances. However, the one-step

model is very complex that usually the three-step model [3] is used to describe pho-

toemission, in which the photoemission process is subdivided into three independent

and sequential steps:

1. Optical excitation of the electron in the bulk.

2. Travel of the excited electron to the surface.

3. Escape of the photoelectron into vacuum.

Three-step model is purely phenomenological but has been proven to be quite suc-

cessful [5–7]. The following description gives a brief explanation of each step:

Figure 2.3: Three-step model (left) and one-step model (right) to describe the pho-

toemission process.
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Step one: It is the photon excitation process, during which an electron absorbs one

photon and enters an unoccupied state. This can be described by the Fermi’s golden

rule:

wfi =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|2δ(EN

f − EN
i − hν) (2.2)

where wfi is the transition probability from the N -electron initial state ΨN
i to N -

electron final state ΨN
f , and the interaction Hint is described with the dipole approx-

imation:

Hint = − e

mc
A � p (2.3)

where A is the electromagnetic vector potential with gauge Φ=0 and p is the elec-

tronic momentum operator.

Sudden approximation: During the process of photoexcitation, the system will

relax after one electron is photoexcitated and can be very complex. The sudden

approximation can be adopted to make the problem simpler, applicable to the high

kinetic energy electrons. It assumes that once an electron absorbs a photon, its speed

is so fast that the emitted electron hardly interact with the (N − 1) electrons left

behind. In this limit, the photoemission process is assumed to be sudden, with no

post-collisional interaction between the photoelectron and the system left behind.

With this sudden approximation, the final state ΨN
f can be written as a product of

wave function of photoelectron φk
f and the state of the remaining (N − 1) electrons
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ΨN−1
f :

ΨN
f = Aφk

fΨN−1
f (2.4)

where A is the operator that antisymmetrizes the wave function. Let us assume the

initial state ΨN
i is a single Slater determinant in Hartree-Fock formalism, and write

it as the product of a one-electron orbital φk
i and a (N-1)-particle term:

ΨN
i = Aφk

i ΨN−1
i (2.5)

where φk
i is the orbital from which the electron is excited and ΨN−1

i is the wave

function of the remaining (N − 1) electrons. With this approximation and from

equation (2.2), we can write the transition probability as:

〈ΨN
f |Hint|ΨN

i 〉 = 〈φk
f |Hint|φk

i 〉〈ΨN−1
m |ΨN−1

i 〉 (2.6)

wfi =
2π

~
|〈φk

f |Hint|φk
i 〉|2|〈ΨN−1

m |ΨN−1
i 〉|2δ(EN

f − EN
i − hv) (2.7)

where 〈φk
f |Hint|φk

i 〉 = Mk
f,i is the one electron dipole matrix element, and the second

term is the (N -1) electron overlap intergral. After excitation of the electron from

orbital k, the remaining (N − 1) electrons are in excited states and will relax to

minimize their energy. Assuming that the final state with (N − 1) electrons has m

excited states with the wave function ΨN−1
m and energy EN−1

m , the total photoemission

intensity measured as a function of Ekin at a momentum k is proportional to

∑
f,i

|Mk
f,i|2

∑
m

|cm,i|2δ(Ekin + EN−1
m − EN

i − hω) (2.8)
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where cm,i = 〈ΨN−1
m |ΨN−1

i 〉 such that |cm,i|2 is the probability that after removal an

electron from orbital φk
i from the N electron state and the remaining (N−1) electrons

will be in excited state m.

Step two: It can be described in terms of an effective mean free-path, proportional

to the probability of the excited electron to the surface of solids. During the process,

photoelectrons can be scattered by electrons and phonons. In most cases the electron-

electron interaction mainly affects the mean free path. Even though the properties

of materials can be very different, an universal mean free path curve can be drawn

for energies of interest, because the electrons in solids can be approximated as free

electrons. Figure 2.4 shows the universal curve of the mean free path at different

photon energy, characterized a minimum about a few angstroms at 20 - 100 eV,

which is the typical energy range widely used in ARPES measurements. This makes

ARPES a surface technique, probing the electronic states within a few layers of the

surface. Therefore, ARPES experiments have to be performed on atomically clean

and well ordered systems, implying that fresh and flat surfaces have to be prepared

immediately prior to the experiment in ultra-high vacuum (UHV) conditions.

Sticking coefficient: The sticking coefficient S is the term used in surface physics

and defined as the ratio of the number of adsorbate atoms or molecules that stick

to a surface to the number of total molecules impinging on the surface. Assuming

S = 1, it takes 2.5 Langmuirs (1L = 10−6 torr·s) to cover one layer of a surface. Now
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Figure 2.4: The universal curve for surface sensitivity in photoemission which shows

the mean free path as a function of photon energy [9]. The data is measured on many

different materials.
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the vacuum can be as good as 2× 10−11 torr, so it takes 13 hours to cover a surface.

The sticking coefficient can be very different, depending on materials and molecules.

BSCCO cuprates can survive in a vacuum chamber for several days without observable

change of spectra. Similarly, ruthenates and iron-based superconductor can survive

in UHV chamber for several hours without any contamination. To probe the bulk

electronic structure of solids, one way is to increase the photon energy, called x-

ray photoemission (XPS), which has poor energy and momentum resolution. An

alternative way is to use low photon energy, which achives very high energy and

momentum resolution, but covers less BZ. The photon energy that can be achieved

with a laser is as low as 6 eV [11]. Nowadays, the interest in laser-ARPES is growing.

Step three: This describes the probability of photoelectrons escaping into the vac-

uum. There is a potential barrier between the solid surface and the vacuum. The

potential is usually called the work function φ, which is the minimum energy needed

for an electron at Fermi energy to escape into vacuum. Only those whose kinetic

energy is higher than the work function can escape into vacuum. The work function

(around 4-5 eV for metals) depends upon the material used for measurement.

2.2 Angle resolved photoemission spectroscopy (ARPES)

Figure 2.5 shows a geometry of an ARPES experiment in which the emission direction

of the photoelectron is specified by the polar (θ) and azimuthal (φ) angles. This
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figure illustrates schematicaly an ARPES setup with a light source, a sample, and a

detector. When photons are incident on the surface of a sample, electrons in solids

called photoelectrons can absorb photons and escape into vacuum to be collected

by the detector. The kinetic energy Ekin of photoelectrons can be measured and

Figure 2.5: Schematic ARPES experimental set up [8]. Photon with energy ~ν im-

pinges on the surface of samples. Electrons can absorb photon and be excited into

vacuum. Those photoelectrons will be analyzed with respect to energy and momen-

tum by an electron analyzer.

their momentum can be derived easily by p =
√

Ekin/2m. During the process of

photoemission, the energy E and parallel momentum k// are conserved and can be
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epxressed as below in terms of the kinetic energy Ekin and angle θ, φ:

kx =
1

~
√

2mEkinsinθcosφ (2.9)

ky =
1

~
√

2mEkinsinθsinφ (2.10)

ARPES measures the electron distribution I(Ekin, θ, φ) with respect to Ekin, θ and

φ, there is one-to-one mapping to I(ω, kx, ky). The intensity measured in ARPES

experiment I(k, ω) can be described as:

I(k, ω) = A(k, ω)f(ω)I0(k, ω,A) (2.11)

where A(k, ω) is the single particle spectral function, f(ω) the Fermi-Dirac distri-

bution function which implies that ARPES measures the occupied states only and

I0(k, ω,A) the magnitude of matrix element |Mf,i(k)|2 which depends on the electron

momentum and on the energy and polarization of the incoming photon.

To describe an interacting many body system, a Green’s function formalism is

introduced. Green’s function can be written in time-ordered G(t − t′), which can

be interpreted as the probability amplitude that one electron added to the sytem

at time t will stay in the same state at time t′. Green function can be written in

energy-momentum representation as follows: G(k, ω) = G+(k, ω) + G−(k, ω).

G±(k, ω) =
∑
m

|〈ΨN±1
m |c±k |ΨN

i 〉|2

ω − EN±1
m + EN

i ± iη
(2.12)

where c+
k or c−k creates or annihilates an electron with energy ω, momentum k in the

initial state ΨN
i , and η is a positive infinitesimal. The one particle spectral function
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A(k, ω) = −(1/π)ImG(k, ω) is written as:

A±(k, ω) =
∑
m

|〈ΨN±1
m |c±k |Ψ

N
i |2δ(ω − EN±1

m + EN
i ) (2.13)

Green’s functions can be expressed in terms of the self-energy Σ(k, ω) = Σ′(k, ω) +

iΣ′′(k, ω), which includes the information on electron-electron interactions. Its real

and imaginary parts contain all the information on the energy renormalization and

lifetime, respectively. Green’s function can be written as:

G(k, ω) =
1

ω − εk − Σ(k, ω)
(2.14)

A(k, ω) = − 1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
(2.15)

Among the general properties of the spectral function, there are several sum rules.

Some fundamentals are given below:

∫ ∞

−∞
dωA(k, ω) = 1 (2.16)

∫ ∞

−∞
dωf(ω)A(k, ω) = n(ω) (2.17)

Given the spectral function A(k, ω), band dispersion and self-energy can be ex-

tracted. The Green’s function has poles when ω−εk−Σ′(k, ω) = 0. This corresponds

to ω = εk+Σ′(k, ω), which is the renormlized band disperion. For interacting systems,

self-energy Σ includes all the information about interactions, which make ARPES a

powerful technique in probing the properties of solids. Assuming the self-energy Σ

is k independent, then Σ can be extracted from ARPES data. With bare band εk
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approximated by LDA calculations or just a linear approximation εk = vF · (k−kF),

we can get:

Σ′(k, ω) = ω − εk (2.18)

Approximately, A(k, ω) has a lorentzian lineshape with maximum of − 1
π

1
Σ′′(k,ω)

, so

that the width of half maximum can be reached when:

− 1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
= − 1

2π

1

Σ′′(k, ω)
(2.19)

Solving this equation will give:

Σ′′(k, ω) =
1

2
(εk2 − εk1) =

1

2

∂εk
∂k

∆k (2.20)

By measuring the width of the constant energy line, we can extract the imaginary

part of the self-energy. In fact the real part and imaginary part of the self-energy are

related by a Kramers-Kronig relation, meaning that with one of them we can derive

the other. We can measure both of them from ARPES data. This analysis has been

done many times and demonstrated its power in probing electron-phonon interactions

and other electron interactions with other collective modes.

Figure 2.6 shows a typical 2-dimensional intensity map I(k, ω), which is the

ARPES intensity as a function of binding energy and momentum. The x-axis is

the momentum and the y-axis is the energy. The intensity value gives the counting

of photoelectrons at that momentum and energy.

Data Analysis There are the following ways to analyze ARPES data:
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Figure 2.6: ARPES intensity plot with EDC and MDC. The image plot is a typical

ARPES intensity map. The upper panel is the MDC line. The right one is the EDC

line.
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(1) Energy Distribution Curves (EDCs): The data analyzed through a constant

momentum line is called energy distribution curve (EDC), which is the ARPES in-

tensity as a function of energy and,

(2) Momentum Distribution Curves (MDCs): The data analyzed through a con-

stant energy line is called momentum distribution curve (MDC) [12], which is ARPES

intensity as a function of momentum. These two curves are used frequently in the

analysis of ARPES data. The EDC function can be expressed as:

IEDC(ω) = I0(kconst, ~ν,A)
1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
f(ω) (2.21)

We can see that the EDC spectra involves the almost constant matrix element. This is

an advantage of the EDC analysis. However, an EDC has a non-trivial ω-dependence:

(i) an EDC is not a lorentzian or any simple function; (ii) an EDC has the Fermi

function term, which makes it asymmetric; (iii)its peak postion is not given by the

pole condition; (iv) at last the EDC width does not only depend on the imaginary part

of the self-energy Σ′′, but also the real part of the self-energy Σ′. All this make the

data analysis of an EDC complicated. Since the development of the Scienta analyzer,

which can measure the two-dimensional map at the same time with better resolution,

MDC analysis becomes available.

IMDC(k) = I0(k, hν,A)
1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
f(ω0) (2.22)

MDC analysis has some advantages: (i) in the vincity of the Fermi energy, the MDC

lineshape is symmetric lorentzian; (ii) MDC will not be affected by the Fermi function.
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(3) Second Derivative Intensity Plot (SDI): In principal, the EDCs and MDCs

analysis should be enough to determine the band dispersion. However, it is difficult

to do so when the peaks in EDCs and MDCs are broad, especially when there are

several broad bands. In that case, the second derivative of EDCs (or MDCs) can be

used to enhance broad peaks and it helps to track the band dispersions well. After

taking the second derivative of a function, any bump in this function will be turned

into a sharper dip, and the minimum point of the dip is the position of the bump

present before. Multiplying by negative sign to second derivative, we can turn the dip

into a peak. We have used second derivative of intensity plots in the coming chapter

to analyze the ARPES data.

2.2.1 Matrix elements and finite-resolution effects

The measured ARPES intensity I(k, ω) is the product of the spectral function A(k, ω),

the Fermi function f(ω) and the matrix element I0(k, ω,A). The matrix element de-

pends on photon energy, electron momentum, geometry setting and light polarization.

Sometimes the matrix element can suppress the photoelectron intensity, which is not

good for measuring the spectral function. On the other hand, we can also choose

different matrix elements to enhance some bands while suppressing others. This can

also give us some information about the electronic structure of solids.

As we know, ARPES directly probes the one-particle spectral function A(k, ω).

However, in extracting the quantitative information from the experiment, not only the
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effect of the matrix element term I0(k, ω,A) has to be considered, but also the finite

experimental resolution and the extrinsic continuous background due to the secondary

photoelectrons (those electrons which escape from solid after having suffered inelastic-

scattering events and, therefore, with a reduced Ekin). The resolution functions are

energy resolution (typically a Guassian) and momentum resolution (more complicated

function). For background correction, there are different kinds of functions used. For

example, the step-edge background consists in three parameter for height, energy

position, and width of the step-edge, which reproduces the background observed all

the way to EF in an unoccupied region of momentum space.

The matrix element can be written as:

Mk
f,i = 〈φk

f | −
e

mc
A � p|φk

i 〉 (2.23)

By using the commutation relation ~p = −i[x, H], matrix element becomes:

〈φk
f | −

e

mc
A � p|φk

i 〉 = 〈φk
f | −

e

mc
A � r|φk

i 〉 (2.24)

ARPES is usually done in the UHV region, ranging from a few eV to a few hundred

eV. For ~ω = 10 eV, one has λ = 103 Å, which is much larger than the lattice constant

and therefore A can be taken as constant. As shown in Figure 2.7a, the initial orbital

has the dx2−y2 symmetry, which is even with respect to the mirror plane. The final

state is taken as plane waves eik�r. For k whose direction is even to the mirror plane,

the intensity is strong. For k whose direction is odd to the mirror plane, the total

integral will be zero. For a generic initial state of either even or odd symmetry with
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Figure 2.7: Schematic representation of the polarization and photon energy effects

in the photoemission process. (a) Mirror plane emission from a dx2−y2 orbital. (b)

Sketch of the optical transition between atomic orbitals with different angular mo-

menta (the harmonic oscillator wavefunctions are here used for simplicity) and free

electron wavefunctions with different kinetic energies [22]. (c) Calculated photon en-

ergy dependence of the photoionization cross-sections for Cu 3d and O 2p atomic

levels [13].

47



respect to the mirror plane, the polarization conditions resulting in an overall even

matrix element can be summarized as:

〈φk
f | −

e

mc
A � r|φk

i 〉


φk

i even 〈+|+ |+〉 A even

φk
i odd 〈+| − |−〉 A odd

The matrix element also depends on photon energy. Assuming that the photo-

electron is a plane wave eik·r, one can rewrite the matrix element as:

|Mk
f,i|2 ∝ |〈φk

f |A · r|φk
i 〉|2 ∝ |(A · k)〈φk

i |ek·r〉|2 (2.25)

If the incident photon energy increases, the momentum k and the kinectic energy

also increase. Then, the matrix element changes in a non-necessarily monotonic

fashion. As shown in Figure 2.7c, the cross section of Cu 3d and O 2p electrons are

photon energy dependent. Besides its photon energy dependence, the matrix element

|Mk
f,i|2 ∝ |k ·k|2 causes the intensity to zero when the system is symmetry forbidden.

2.3 Experimental aspects

An ARPES system consists of several components, mainly detector, light source, and

vacuum system.

Detector ARPES measures a continuous spectrum of photoelectron intensity as

a function of kinetic energy and space angle, which is done by an electron energy

analyzer. There are many types of electron analyzers using different mechanisms. In

principle, four methods can be used to analyze the energy of an electron [22]:
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1. The use of resonances in a scattering process.

2. The time-of-flight.

3. The deceleration of an electron using a retarding electric field.

4. The change of the orbit of a particle by an electric or magnetic field.

Now most widely used detectors in ARPES are hemispherical detectors, which use the

forth method to convert energy resolution into space resolution. A conventional hemi-

spherical analyzer consists of a multielement electrostatic input lens, a hemispherical

deflector with entrance and exit slits, and electron deflectors (i.e., a channeltron or

multichannel detector). The heart of the analyzer is the deflector. The mechanism

of the energy analyzer, shown schematically in Figure 2.8, involves an inner and an

outer hemispheres, with radius R1 and R2. High voltage difference ∆V is applied the

two hemispheres. The electric field generated between the inner and outer concentric

hemspheres will allow eletrons with a narrow kinetic energy range to pass through,

while all other electrons will hit the inner or outer plates. The energy is pass energy

Epass = e∆V/(R1/R2 − R2/R1). Electrons will be retarded or accelerated to this

kinetic energy to pass through.

Electrons lens: The lens can retard the electrons to the energy that can be detected

by the analyzer. A two dimensional high resolution detector is mounted at the exit

slit of the analyzer. The detector is highly position resolved, and can convert electrons
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into light, which can be detected by a CCD camera. The resolution measured with

Epass is determined by the radius and the slits, ∆Eα = Epass(w/R0 + α2/4).

Figure 2.8: Hemispherical electron analyzer [22]. The inner and outer hemispherical

plates with radius R1 and R2 are connected to high voltage V1 and V2.

Detectors manufactured by Scienta such as SES 2002, R4000, SES 100 have been

used to collect data in this work. The Scienta detector can measure the 2 dimensional

spectra simutaneouly and can achieve high energy and momentum resolution. The

detector consists in three parts: (1) hemispherical energy analyzer; (2) electron lens;

(3) two dimensional high resolution electron detector. The Scienta analyzer system

is doubly µ-metal shielded to reduce the effect of a magnetic field even in presence

of strong magnetic field. The Scienta detector (SES 2002) is a 200 mm radius hemi-

spherical analyzer. The lens can be utilized in several modes of operation in order
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to give an optimum performance in different types of experiments such as UV light

ARPES and XPS. It has an energy resolution of 2 meV at the pass energy Ep = 2 eV

and an angular resolution of about 0.1 degree. At the photon energy 22 eV, Scienta

detectors can resolve up to 1/50 of the first Brillouin zone of a high Tc cuprates.

Figure 2.9: Scienta hemispherical detector. The detector is composed of photoelectron

lens, a hemispherical analyzer and a detector.

As shown in Figure 2.9, the electron lens collect photoelectrons. With a retarded

potential, the lens can retard photoelectrons and reduce their kinetic energy to Epass

and spread the electrons from different angles to different positions at the entrance

slit. At each angle, electrons have an energy dispersion. Then at the exit slit, the

photoelectron spectrum has been converted into a space resolution. A detector is
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mounted at the end of the exit slit to detect photoelectrons. It includes a micro

channel plane (MCP) and a phosphor plane in series, and the light is detected by a

CCD camera. The product Seienta R4000 can achieve: (1) a submev resolution; (2)

a 4000 resolving power; (3) a 30 degrees wide acceptance angle; (4) can work with up

to 10 keV kinetic energy.

Light source The light source used in ARPES should provide a high intensity of

monochromized photons able to emit electrons from the sample. The work function φ

of a typical material is about 4-5 eV, so the photon energy should be higher than this

to knock out electrons. Usually ARPES experiments are performed within the photon

energy range from a few electronvolts to a few hundred electronvolts. Basically, there

are three kinds of light sources used in ARPES: synchrotron light, gas discharge

lamp and laser. As for the work presented in this thesis, most data were taken with

synchrotron light and He lamps.

Synchrotron radiation The application of synchrotron radiation in photoe-

mission was used since the late 1960s at a few first-generation sources. The second-

genaration synchrotrons are purposely designed storage rings to serve as a source of

synchrotron radiation. The third-generation started in 1990s are designed to optimize

the characteristics of electron beams in the straight sections, which can accommodate

longer insertion devices.

The basic principle of the synchrotron radiation can be explained by classical
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electrodynamics. When charged particles move at at a relativistic velocity and are

accelerated perpendicular to their trajectory, there will be electromagnetic radiation

by particles. The acceleration is usually achieved by magnetic fields. Due to the

relativistic energy of the particles the generated light has superior properties. If the

electron is relativistic, the radiation emission occurs tangentially to the trajectory

and the beam is highly focused. The synchrotron light is usually continuous over

a wide range of wave-lenghts. The spectrum of synchrotron radiation covers visible

light, ultra-violet (UV) and X-ray radiations. The natural divergence of the radiation

is very small and collimators further reduce it. Linear or circular polarizations, which

can be achieved depending on the application, is of particular interest in investigations

of magnetic systems and orbital symmetry. Gratings are used to get monochronized

light coming from synchrotron sources. Close to the chamber, light is focused with

mirrors. The diagram is shown in Figure 2.10.

Figure 2.10: Schematic diagram of PGM Beam line and a Scienta electron spectrom-

eter.
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Synchrotron light has several advantages:

• High brightness.

• Wide energy range, tunable from infrared to hard X-ray.

• Polarized (linear and circular).

The work presented here has been performed with synchrotron beam at Advanced

Light Source (ALS) beam line BL12, Synchrotron Radiation Center (SRC) U1-NIM,

Wadeworth and PGM, and National Synchrotron Light Source (NSLS) U13. Differ-

ent beamlines have optimal performance at different energy range and different end

stations. The 200 line/mm grating at ALS BL12 can provide 1013 photons/s at 134

eV, which is quite bright. The energy range is from 28 to 320 eV.

Helium discharge lamp Helium lamp is a simple light source which utilizes the

Helium resonance lines coming from the dilute plasma of He. It is a monochromized

ultraviolet light source. Helium has two characterized lines: HeI energy is 21.2 eV and

HeII energy is at 40.8 eV. Several characters make He lamp a good light source: (i)

it is easy to operate; (ii) the size is small (iii); the energy is appropriate for ARPES

experiment; (iv) the line width of He resonance is 10 meV or less; (v) He gas is

inertial element and has weak contamination effect to most samples after using small

apertures and differential pumping between the lamp and the sample chamber. The

new generation He lamps utilize the Electron Cyclotron Resonance(ECR) mechanism

to produce low pressure He plasma. ECR is created in a small metallic discharge

54



cavity by the application of a strong permanent magnetic field B, perpendicular to

the microwave E vector. Under ECR, electrons will move in a circular motion with a

frequency of 10 GHz microwave. The circulation motion in the cavity will increase the

probability of electrons colliding with He atoms, and produce a high flux of radiation.

Figure 2.11: Low pressure helium gas in a small cavity is excited by ECR electrons

to produce high intensity UV radiations.

Low pressure of He can increase the intensity ratio of HeII to HeI. This design can

produce HeI with linewidth of 1.1 meV. The He lamp setup includes: (1) a microwave

generator; (2) a resonance cavity; (3) an He source; (4) differential pumping; (5) a

grating. He lines have two components, for example He Iα and Iβ for the He I line,

and a grating is introduced to get monochronized light. At the same time, the grating

can work as a focusing mirror. There are some disadvantages related to the He lamp:

(1) the flux is not as high as an undulator beamline; (2) the photon energy can not
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be tuned; (3) the gas flow will get into the measurement chamber without a filter,

thus affecting the vaccum; (4) light spot is large so momentum resolution is not good,

thus a large flat surface is necessary.

Laser source Although the synchrotron sources offer unparalleled flexibility

in wavelength tunability, the cost is on the order of 100 million dollars and also it

requires a large support staff for operation and maintenance. Because of this, and the

fact that there are currently only four synchrotron facilities in the United States at

which high-resolution ARPES experiments are regularly performed, there is a great

deal of competition for beam time. Alternative photon sources for ARPES, such as

lasers, are therefore highly desirable. There are developments of table-top 6 eV laser

photon sources. These sources offer state-of-art in resolution and other aspects of

data quality such as bulk sensitivity.

Vacuum system ARPES experiment are usually performed with photon energy 10-

100 eV, with a mean free path of about 5-20 Å, just the top most layers of the sample.

Fresh, flat and atomically ordered surfaces are critical to ARPES measurements.

Basically, vacuum pressure can be divided as follows:

1. Rough (low) vacuum: 10−3 Torr

2. Medium vacuum: 10−3 - 10−5 Torr

3. High vacuum (HV): 10−6 - 10−8 Torr
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4. Ultra-high vacuum (UHV): < 10−9 Torr

For ARPES experiments, samples must be cleaved and measured in a UHV envi-

ronment. To construct vacuum systems, different kinds of pumps are used such as

mechanical pump, turbo pump, sublimation pump, cryogenic pump, ion pumps etc...

The following gives a brief introduction of the different pumps used in ARPES sys-

tems.

Mechanical pump This pump is based on positive displacement, where the gas is

transported by means of pistons, gears, vanes, rotating cams, and so on. A typical

mechanical pump consists of an inlet, and an exhaust with a one-way valve, and an

off-centre rotating piston in a cylindrical cavity. As the piston rotates, gas is pulled

into the cavity, and is forced out through the exhaust port. The rotating piston

has spring-loaded vanes to create a seal with the cavity wall. A rotary pump uses

rotating vanes to display gases. Low-vapor-pressure oil is used for sealing, lubrication

and cooling purpose. This pump can create a pressure of ∼ 10−3 [14].

Turbo pump This pump is based on momentum transfer, where the pumped gas

is entrained in and removed by an energetic stream of a pumping fluid or directed by

fast-moving blades. Turbomolecular pumps use a series of high-speed rotors (25,000

to 75,000 rpm) and flow stabilizing, stationary stators to impart a preferential mo-

tion to gas molecules and create molecular flow through the pump. They are called

“molecular bats” or “axial flow turbines”. Multiple stages consisting of rotor/stator
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pairs are mounted in series and mechanical energy of the blades is transfered into

gas molecules. Magnetic bearings are used to reduce friction and oil contamination.

A turbomolecular pump mechanism cannot exhust directly to atmosphere and thus

requires a backing pump. Usually, a oil sealed rotary vane pump is used as a backing

pump [14].

Ion pump This pump is based on entrainment, where the gas is absorbed on the

surface of a suitable material that may or may not be refrigerated. Ion pumps utilize a

sputtering process to ionize gas molecules and embed them into an anode or cathode

wall. The entrainment process can utilize a getter such as titanium to bind and

bury the molecules. They can operate in the ultra high vacuum range and eliminate

contamination by organic molecules.

The pumping action in sputter-ion pumps is thought to be produced by the fol-

lowing processes [14]:

1. Ion burial and entrapment within the metal lattice a few atomic layers under

the surface of the cathode.

2. Gettering of chemically active gases at the cathode and elsewhere by sputtered

deposits.

3. Diffusion of hydrogen into the cathode material.

4. Dissociation of complex molecules into simpler fractions which are then pumped

by one of the mechanism.
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5. Production of neutral atoms of high velocity (or energy) by neutralization of

ions and scattering from the cathode surface.

Sublimation pump Getter or titanium sublimation pumps (TSP) entrain gas

molecules in a getter, or material that is vaporized in order to absorb or capture

the molecules, and embed them on the cold outer wall of the chamber. Using a

large-surface area porous matrix for entrainment, we can also sue “non-evaporating

Gettering sorption” technique.

Figure 2.12: Pressure regions showing effectiveness of particular pumps [14].

Cryogenic pump One of the simplest ways of creating vacuum is to lower the

temperature of a gas until it condenses into a liquid and then becomes a solid. Cryo-

genic pumps utilize extremely cold ( at the temperature of liquid He and N2) surfaces

and adsorption surfaces to freeze or trap molecules. These pumps can operate with
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relatively high pressures. Modern cryopumps are usually built as self-contained units

with their own vacuum shell and an inlet flange, similar to diffusion pumps and turbo-

molecular pumps. The cooling is achieved by the use of mechanical cryorefrigerators

at a temperature of 10 to 20 K and combining condensation and sorption [14].

Each pumping device has certain advantages of performance, cost, and process

compatibility which make its use preferable in particular applications. This general

concept of practicality is illustrated in Figure 2.12, where approximate costs for a

variety of pumping speeds is shown relative to inlet pressure.
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Chapter 3

Metal insulator transition and

Ca2−xSrxRuO4

3.1 Introduction

In condensed-matter systems, metal insulator transitions (MIT) are widely observed

which are accompanied by high resistivity changes even over tens of orders of magni-

tude. Among them, the very interesting and important ones are the transitions driven

by correlations associated with on-site electron-electron Coulomb repulsion. The in-

sulating phase caused by the correlation effects is categorized as the Mott insulator.

Near the transition point, the metallic states often show fluctuations or ordering in

the spin, charge, and orbital degrees of freedom. The physical properties are very

different from ordinary metals. Many new theoretical models have been developed
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over the years to explain the doped Mott insulators because the properties of these

insulators can not be explained by simple models based on Fermi-liquid theory [1].

Many facinating properties of the correlated meterials near metal-insulator transi-

tion have been studied extensively in d-lectron systems such as high-Tc superconduct-

ing cuprates. More recently, other kinds of correlatated systems such as ruthenates,

cobaltates, and iron-based superconductors have attracted interest due to novel su-

perconducting and other exotic phases in these systems.

Here we will discuss the physical properties calcium substituted Sr2RuO4 (Ca2−xSrxRuO4).

Sr2RuO4 (called as Sr214) is isostructure with first high TC superconductor La2−xBaxCuO4

and this is only perovskite superconductor which contains no copper. Although, it

shows low Tc (∼ 1.5 K), attention was given due to its unconventional superconduct-

ing states (possibly p-wave spin triple), which can not be described by BCS theory.

By substituting Ca for Sr, Ca2−xSrxRuO4 can quickly lose its superconductivity

and eventually become an insulator. The subsitution of isovalent but smaller Ca2+-

ion for Sr2+-ion does not lead to a more metallic state. Instead, the system changes

from superconductor to paramegnetic metal, ferromagnetic metal, and finally anifer-

romagnetic insulator with increasing Ca concentration.

Ca1.5Sr0.5RuO4 is believed to be a quantum critical point (QCP) because at

this doping, the susceptibility diverges and the corresponding Curie temperature

approaches zero Kelvin. The end member Ca2RuO4 , is a Mott antiferromagnetic

insulator. Therefore, Ca substitution connects the system from metal to insulator.
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Ca1.8Sr0.2RuO4 is also interesting to study because it shows a metal/non-metal

transition by varying temperature and calcium concentration, and it is at the bound-

ary between a magnetic metal and an antiferromagnetic insulator. It also exhibits

non-Fermi liquid behaviors in the resistivity. The Mott transition is believed to be

driven by the change of electron filling among multiple orbitals. Thus, Ca2−xSrxRuO4

can be called a “doped Mott insulator”. This gives a golden opportunity to study

the evolution of electronic structure from a multi-band metal to a Mott insulator in

an isoelectronic system.

3.2 d-electron system

This thesis mainly describes electronic states of the d electron system such as ruthen-

ates (4d system) and Fe (3d) system. The electronic states of d- electron system is

described as follows.

The atomic orbitals of transition-metal elements are made as eigenstates under the

spherical potential generated by the transition-metal ion. Due to periodic potential

of atoms, the atomic orbital forms bands. In transition-metal compounds, the overlap

is often determined by indirect transfer between d orbitals through ligand p orbitals.

In 4d system, 4s and 4p bands are pushed well below the d band, where screening

effects by 4s and 4p is weak. In case of 3d orbital, the bands are formed under the

strong influence of anisotropic crystal field in solids.

Figure 3.1 shows an example of the crystal field splitting. In this case cubic lattic
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Figure 3.1: Crystal-field splitting of 3d orbitals under cubic, tetragonal and or-

thorhombic symmetries. [1].
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symmetry promotes to a higher energy level of fourfold degenerate eg orbital and

sixfold degenerate lower orbitals t2g. When the atom is surrounded by ligand atoms

having octahedron configuration, the eg orbital has anisotropy with larger amplitude

in the direction of the principle axes. Thus eg orbital further expands into dx2−y2 and

d3z2−r2 orbitals. Similarly, the t2g orbital has anisotropy with larger amplitude of the

wave function toward other directions and may be represented by dxy, dyz, and dzx

orbitals.

Figure 3.2 shows an example of configurations for transition-metal 3d orbitals

which are bridged by ligand p orbital. Here the relevant 3d orbitals and oxygen 2p

and As 3p orbitals become closer in case of cuprates and pnicties respectively. This

is mainly because the positive nuclear charge increases with change, which makes the

chemical potential of the d electrons lower and closer to the p orbital. It is important

to consider the hybridization effects between 4d and p orbitals.

3.3 Metal-insulator transition

The first theory of explaining metal-insulator transition is based on a non-interacting

or weakly interacting electron system. This theory explains materials according to

electrons at the outermost orbital at zero temperature. For example, in the case

of insulators, the highest electron band is completely filled, while, for metals, it is

partially filled. Alternatively, we can say that the Fermi energy level lies in a band

gap for insulators while it is inside bands for a metal. For non-interacting systems,
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Figure 3.2: Configuration for transition-metal 3d orbitals which are bridged by ligand

p orbitals. [1].
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electron bands are formed by the overlap of atomic orbitals in a periodic lattice. It is

also noticed that insulators with a small energy gap are regarded as semiconductors

due to thermal excitation of electrons [1].

However, there is another kind of insulators that have partially filled orbitals.

Their insulating nature is caused by the electron-electron Coulomb repulsion at the

same atomic sites, generally called electron correlation. This kind of insulators is

called Mott-insualtor. Mott insulators are a class of materials that are expected to

conduct electricity under conventional band theory, but which in fact turn out to be

insulators when measured. This effect is due to electron-electron interactions which

are not considered in the formulation of conventional band theory. Mott insulators

are usually found in transition metal oxides with partially filled d-electron orbitals [2],

since d-orbitals are more localized and have strong Coulomb repulsion. One classical

example is the NiO, which has a half filled outermost orbital but is a very good

insulator.

The understanding of strongly correlated systems has been a big challenge for

condensed matter physics for a long time. In addition to the Mott insulating phase,

the more challenging subject is how to describe the metallic phase near the Mott

transition, which often display some interesting phenomena, such as high Tc super-

conductivity, colossal magnetoresistance. The fluctuations of spin, charge, and orbital

correlation are strong and sometime critically enhanced near MIT in the metallic re-

gion. The Hubbard model [3,4] was developed to understand this kind of properties.
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The second quantized expression of the Hubbard model is given by:

HH = Ht + HU − µN (3.1)

where

Ht = −t
∑
<ij>

(c†iσcjσ + h.c.) (3.2)

HU = U
∑

i

(ni↑ − 1/2)(ni↓ − 1/2) (3.3)

N =
∑
i,σ

niσ (3.4)

t= transfer amplitude, and U = Coulomb potential

In the Hubbard model, the electron correlation strength U/t and band filling

parameter n are important. The schematic phase diagram is shown in Fig. 3.3.

3.3.1 Orbital selective Mott transition

The strongly correlated multi-orbital electron systems are among the most interesting

topics in condensed matter physics. The addition of orbital to localized spin degrees of

freedom leads to various remarkable phenomena such as maganite La1−xSrxMnO3 [5]

and the ruthenates Sr2RuO4 [2] where interesting phenomena such as colossal mag-

netoresistance [1] and triplet pairing superconductivity [7,8] were observed. Further-

more, the substitution of Ca for Sr in Sr2RuO4 compound provides an exotic phase

diagram including showing a band-width controlled Mott transition [9].

The charge, spin, orbital and lattice are the main factors of the physics in transi-

tion metal oxides. The interplay and competition among them are the key points to
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understand interesting physical properties in transition metal oxides. On the other

hand, the Mott transition plays an important role in understanding correlation effects

in solid states [1]. One of the important issues in the study of the Mott transition

is whether the Mott transition in realistic materials is purely interaction driven or

orbital and lattice degree of freedom also play some role [10]. Most of the realistic

materials which undergo Mott transition have more than one active orbital [1, 6].

The orbital selective Mot transition (OSMT) is a very important feature for the Mott

transition in a multi-orbital system. It was first proposed by Anisimov in the study

of Ca2−xSrxRuO4 [4, 6, 9, 14]. According to Anisimov et al. [6], which is based on a

non-crossing approximation calculation within dynamical mean field theory (DMFT),

that the valence electron distribution becomes (3, 1) at xc = 0.5. They further pro-

posed that one of the α and β bands hosts two of the three electrons and is thus

completely filled and band-insulating while the other, half-filled band becomes Mott

localized with spin-1/2 local moment due to the narrow bandwidth relative to the

Coulomb energy (Hubbard U). The half-filled γ band, howerver, remains itinerant

due to its wider bandwidth, resulting in a metallic phase consistent with transport

experiment.

The orbital degree of freedom is involved in the OSMT and the Mott transition in

different orbitals happens individually because of the lifting of orbital degeneracy. In a

crystal, basically there are two origins which can induce the asymmetry in the orbital

space. The first one is the breaking of the local rotational symmetry in the crystal,
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which makes different orbits pointing along different direction have different band

width. The second one is the crystal field splitting generated by lattice distortion,

which removes the degeneracy of the energy levels. A two-band generalized Hubbard

model with half filling has been proposed to study the basic features of OSMT.

Most of the studies on this two-band model using dynamical mean field theory reach

the following common conclusions: (i) The OSMT is induced by the band width

asymmetry of the different orbits. The crystal field splitting will reduce rather than

enhance the tendency to OSMT. (ii) The orbitally selective Mott Phase (OSMP),

in which one orbit is already localized while the other one keeps itinerary, will be

greatly enhanced when the symmetry of the local interaction is lowered by including

the Hund’s rule coupling.

Although the two-band model has been extensively studied in the recent years, it

may not be directly applied to the situation of Ca2−xSrxRuO4, because the effective

model here is three-band model with four total electrons [6,30]. The most interesting

feature of the OSMT in this system is that the OSMT will be accompanied by the

change of orbital polarization. Before reaching OSMT, as predicted by LDA calcula-

tion and confirmed by ARPES [4,30], the four electrons in Ca2−xSrxRuO4 are almost

evenly distributed among the three t2g orbitals. Therefore, the average occupation

number of each orbital is 4/3 before the OSMT. In order to have OSMT, 1/3 of elec-

tron has to be moved from the localized orbital to the non-localized ones. Thus the

OSMT is always accompanied by the charge redistribution or the charge of orbital po-
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larization. Since the crystal field splitting strongly couples to the orbital polarization,

it will play a very important role in the OSMT for the three-band model [17].

3.4 Ca2−xSrxRuO4 and metal-insulator transition

One of the fundamental problems of many-body interactions in condensed matter

physics is a metal-insulator transition under Coulomb interaction. Ca2−xSrxRuO4

provides a good example in understanding the metal-insulator transition in an iso-

electronic multi-band system. The system changes from a Mott-insulator, Ca2−xRuO4,

to a unconventional p-wave superconductor, Sr2RuO4, and has other interesting phases

in between as shown in Fig. 3.2(a) and (b). Studies of Ca2−xSrxRuO4 help us to un-

derstand the unconventional superconductivity in Sr2RuO4, Mott insulator and Mott

transition.

Ca2−xSrxRuO4 is a bandwidth control system. The systematic phase diagram in

the plane of U/t versus filling δ is shown in Fig. 3.3. The metal-insulator transition

is realized by the control of the bandwidth instead of the electron filling.

3.4.1 Phase diagram of Ca2−xSrxRuO4

Sr2RuO4 is a p-wave superconductor which shows a metallic normal state. Substitut-

ing isovalent Ca2+ ion in place of Sr2+ , Ca2−xSrxRuO4 develops a rich phase diagram

which is shown in Fig. 5.9(a) and (b). The rotation and tilting of RuO6 octahedra is

shown in Fig. 5.9(c)-(f).
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Figure 3.3: Schematic phase diagram in the plane of the correlation U/t and the

filling derivative δ from integer. The horizontal arrows indicate the carrier doping

route and the vertical one is the band width control route.
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The phase diagram is divided into three regions, which are called as region I (0 <

x < 0.2), region II (0.2 < x < 0.5) and region III (0.5 < x < 2).

Figure 3.4: (a) and (b) Phase diagram of Ca2−xSrxRuO4 taken from [9]. (c)-(f) plots

showing rotation and tilting of the RuO6 octahedra at x =0, 0.2, 0.5, 2 respectively [6].

Region III ((0.5 < x < 2): In this region, the system is basically a paramagnetic

metal. It is clear from experiments that the superconductivity is quickly suppressed

when Sr is substituted by Ca in Sr2RuO4. This is believed to be a natural consequence

of disorder in a d-wave superconductor. In this region, the crystal structure of the
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system starts to change. Sr2RuO4 has an undistorted K2NiF4 structure with I4/mmm

space group at low temperatures. After x=1.5, this structure becomes unstable, and

RuO6 octrahedra start to rotate around c-axis with I41/acd space group. At x =1.5,

only diffusive scattering representative of short range rotation is present.

The value of xc = 0.5 is a critical value, separating a metallic and orbitally ordered

phase with antiferromagnetic spin correlation (x < xc) from the paramagnetic metal

for x > xc. In this case, one observes θcw ≈ 0 for x ≈ xc and magnetic moment takes

a value of S = 1/2. This value is quite distinct from the value of S = 1 in Ca2RuO4

- the expected value for a localized Ru4+-ion with 2 holes in the t2tg-subshell. In

addition, alloys with x ≈ xc are metallic, not insulating.

Region II (0.2 < x < 0.5): The system is a magnetic metal at low temperatures

in this region. The Neel temperature is about the order of 10 K. At low temperatures,

there is a transition between non-magnetic and magnetic metal. The RuO6 octra-

hedron starts to tilt in this region. Around x = 0.5, a combination of rotation and

small tilt is found. This structure is called “tilt phase”, which is either a subgroup

of I41/acd or Pbca. The tilt angle increases with decreasing Sr concentration. At x

=0.2, a tilt angle of about 7o is found.

Region I (0 < x < 0.2): In this region,the system is an antiferromagnetic

insulator at low temperatures. The system changes from magnetic metal to an AFM

insulator upon reducing the Sr concentration beyound x = 0.1. It becomes a bad

metal at high temperatures. Either by changing doping or temperature, the metal-
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insulator transition can be achieved. There is also structural transition at this region.

At low temperatures, its structure is a small c lattice parameter S − Pbca structure.

Upon increasing temperature, the structure changes to a large c lattice parameter

L−Pbca structure. The transition between the S −Pbca and L−Pbca is first order

structural transition. The tilting angle also increases.

3.4.2 Transport properties of Ca2−xSrxRuO4

Figure 3.5: (a) Temperature dependence of the in-plane resistivity, ρab(T), for

Ca2−xSrxRuO4 with different values of x. (b) ρab(T) subtracted by the zero tem-

perature residual resistivity ρab(0). The inset is ρab(0) with fit by the Nordheim law

Ax(x− 2).

Resistivity Measurement: The resistivity (ρab and ρc) of Ca2−xSrxRuO4 shows

a strong Ca substitution dependence as illustrated in Fig. 3.5. In region I, Ca2RuO4

is non-metallic at all temperatures. The metal-non metal transition for x = 0.09 and
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0.15 is achieved at TM/NM ' 155K and 70 K, respectively. The resistivity changes

abruptly by a factor more than 104 at TM/NM . At x = 0.15, the resistivity data below

transition temperature TM/NM can be fit well by ρab(T) = A exp(To/T)1/4, which

suggests that localization dominates the non-metallic behavior.

In region II and III, ρab curves show metalic (dρ/dt >0) behavior. ρab(T)-ρab(0)

increases quite systematically with Ca substitution. The residual resistivity ρab(0)

has a peak around x =1.0, which is consistent with Nordieim formula Ax(2− x), as

shown in inset of Fig. 3.5(b).

The out-of plane resistivity ρc(T) is less temperature dependent and even non-

metallic. In order to show the temperature dependence clearly, the c-axis resistivity

is normalized by the value at 300 K shown in Fig. 3.6. In region I, the ρc(T) is metallic

near to the M-NM transition temperature at 70 K. However, in the region II, a clear

change from non-metallic to metallic is observed upon lowing temperature.

Susceptibility Measurement: In the metallic regions (II and III), the suscepti-

bility χ(T ) = M/H, shows systematic variations with x at a low magnetic field. In

Fig. 3.7(a) and (b), the in-plane susceptibility χab(T ) curves for single crystal samples

are shown for region II and III, respectively. The insets of Fig. 3.7(b) are the inverse

susceptibility measured by polycrystalline samples.

In order to study the evolution of the temperature dependence of susceptibility,
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Figure 3.6: (a) Temperature dependence of the out-of-plane resistivity, ρc(T) nor-

malized by the values at 300 K for Ca2−xSrxRuO4 with different values of x. For x

=0.15, the data are shown only above the M-NM transition point of 70 K. The inset

illustrates the crossover at To for x =0.2 and 0.4 (b) The variation of ρc(T)/ρc(Tmax)

against T/Tmax for several values of x in region III. The inset displays the x depen-

dence of Tmax (solid circle) and ρc(Tmax) (open diamond).
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Figure 3.7: Temperature dependence of the in-plane susceptibility for Ca2−xSrxRuO4

with different values of x (a) in region II for the [110] component and (b) in region III.

For both regions, the zero field-cooled (ZFC) and field-cooled (FC) curves agree very

well. The insets for (a) and (b) display the inverse susceptibility of polycrystalline

samples in regions II and III, respectively. (c) χ(0) at 2.0 K vs Sr concentration in

regions II and III.
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the Curie-Weiss analysis is used. The data can be fitted by

χ = χo +
C

T −Θw

(3.5)

Here χo is a temperature-independence term, C is the Curie constant, and Θw

is the Weiss temperature. The effective Bohr magneton Peff was derived from the

formula

C =
NAP 2

effµ
2
B

3KB

(3.6)

where NA, µB and KB are Avogadro’s number, the Bohr magneton and Boltzmann’s

constant, respectively.

All the data in region II and III can be fitted well by the formula. Figure 3.7(c) il-

lustrates doping dependence of the in-plane susceptibility at low temperatures. When

the Sr concentration is decreased from Sr2RuO4, χ(0) increases and reaches at a maxi-

mum at x = 0.5. This maximum value is about 100 times larger than that of Sr2RuO4.

Then it decreases upon further decreasing of x value. The maximum of susceptibility

in region III (x → 0.5) is believed to be due to the increase of FM spin fluctuations.

The decrease is due to the competition between the FM and the AFM state. The

system reaches an AFM state when x approaches 0.2.

Field dependence of the magnetization: Figure 3.8 shows the field dependence

of M and the longitudinal magnetoreistance at 0.6 K. As B increases, M shows

a stepwise increase at Bcr = 2.3 and 6 T for its ab-plane and c-axis components,

respectively. These metamagnetic transitions should be due to the field destabilization
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Figure 3.8: Field dependence of the magnetization and longitudinal magnetoresis-

tance at 0.6 K for Ca1.8Sr0.2RuO4 taken from reference [18].
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of the AF coupling. At the heighest fields, both components show a tendency to

saturate around 0.8µB. For the Ru4+ state, the moment is expected to increase up to

a saturation value of 2 µB. until a half-metallic state is achieved. It is important to

note that the observed saturation moment is close to the effective magneton of 1 µB

estimated from the Curie-Weiss analysis of χ(T ). This suggests that the system at

high fields is in an almost polarized FM state with a local moment of S = 1/2. Also,

both the ab-plane and c-axis components of the magenetoresistence change their signs

from positive to negative across Bcr, which is consistent with a change in the spin

coupling from AF to FM.

In Ca1.8Sr0.2RuO4, γ Fermi surface is absent at 1.5 electron occupancy [19]. It

is possible for the γ complex to undergo the Mott transition and become localized

in the doubled unit cell, contributing a spin-1/2 local moment. Since there are two

Ru atoms per supercell, the localized magnetic moment is 0.5 µB per Ru atom. This

is indeed consistent with the field dependent magnetization measurement as shown

in Fig. 3.8. The sharp increase of the magnetization to 0.5 µB as the applied field

reaches about 5 T can be attributed naturally to the polarization of the local moment,

whereas the subsequent gradual growth of the magnetizaton with further increasing

field arises from Pauli paramagnetism of the itinerant α and β band electrons.

Effective Bohr Magnetron: The systematic doping dependence (x) of the effec-

tive Bohr magneton Peff extracted from the data in Fig. 3.7 is shown in Fig. 3.9.

At x =0, i.e. for Ca2RuO4, the Peff has the largest value with almost 80 % of the
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Figure 3.9: Curie-Weiss parameters against the Sr content x in Ca2−xSrxRuO4. The

solid and open circles correspond to the results of polycrystalline samples for the

high-temperature and the low temperature fitting regions, respectively. (a) the solid

horizontal lines correspond to the effective Bohr magnetons with S =1/2 and 1. The

inset in panel (b) is an enlarge figure for region II. The solid curves are guides to the

eye.
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expected value for S =1 configuration. As x increases, Peff decreases rapidly in region

I and becomes almost a constant for 0.2 ≤ x ≤1.5 with a value that corresponds to

S =1/2. The electronic states of S =1/2 are not fully understood yet. The extracted

Weiss temperatures are shown in Fig 3.9(b). In the region III (0.5 ≤x ≤2), the Weiss

temperatures (Θw) are negative. Θw increases with decreasing x and it approaches to

zero when x approaches 0.5. However, the negative values of Θw in region III can be

understood as the evolution of FM spin fluctuations according to the self-consistent

renormalization theory.

When the system reaches region II, Θw shows two different kinds of behavior.

The high temperature data show a positive Θw while the low temperature data and

the single crystal data show a negative Θw . The negative Θw indicates an AFM

interaction while the positive Θw indicates a FM interaction. There is a structural

transition (To) which may cause a change in magnetic interactions. Ca2−xSrxRuO4

changes from a paramagnetic metal to a magnetic metal at the critical x value. The

Weiss temperature Θw approaches zero. The phase transition occurs at T = 0, so the

transition is a quantum transition at xc ∼ 0.5. This point is called quantum critical

point.
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Chapter 4

Observation of a novel

orbital-selective Mott transition in

Ca1.8Sr0.2RuO4

4.1 Introduction

Ca2−xSrxRuO4 is a fascinating 4d multi-orbital system that exhibits a rich and in-

tricate phase diagram, ranging from a chiral p-wave superconductor (Sr2RuO4) to

a Mott insulator (Ca2RuO4) [2, 3]. Similarly to the high-Tc cuprates, the metal-

insulator transition under the influence of electron correlations in the ruthenates is of

fundamental importance and currently under intensive debate. There is accumulating

experimental evidence for the coexistence of local moments and metallic transport,
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and heavy fermion behavior in the region of 0.2 ≤ x ≤ 0.5 [3–5], which is remarkable

because there are no f -electrons in this material. To account for the coexistence of

localized and itinerant electrons in this region, the scenario of orbital selective Mott

transition has been proposed [6,7] as the following: Sr2RuO4 has three degenerate t2g

orbitals (dxy, dyz, and dzx) occupied by four 4d electrons. The isovalent Ca substitute

does not change the total carrier concentration (i.e. no doping), but rather increases

the effective electron correlation strength (Ueff ) relative to the reduced bandwidth

which is induced by structural change due to the smaller ion radius of Ca2+. Con-

sequently, it is possible that an OSMT takes place in the narrower bands, i.e., the

one-dimensional (1D) dyz and dzx orbitals, where electrons undergo a Mott transi-

tion and become localized, while the electrons in the wider two-dimensional (2D) dxy

band remain itinerant. A similar partial localization mechanism has been proposed

for some heavy fermion materials, e. g., UPd2Al3 [8].

While the concept of OSMT is of critical importance to the multi-orbital Mott

Hubbard systems and has been studied extensively in theory [6, 7, 9–11], it has not

been confirmed experimentally. Our previous ARPES study [12] shows that, for

samples with x = 0.5, the two 1D (α and β) Fermi surface sheets are clearly “visible”

as well as that of 2D (γ) FS, although the latter is considerably smeared and weaker in

comparison to the case of Sr2RuO4. This is in sharp contrast to the OSMT prediction

that the 1D FS sheets become Mott localized.
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Figure 4.1: The valence band of Ca1.8Sr0.2RuO4. (a) Plot of second derivative of

ARPES intensity for the valence band of Ca1.8Sr0.2RuO4 taken along Γ-M-X (hν =

75 eV, T = 40 K). (b) The corresponding EDCs along Γ-M-X. (c) Comparison of the

EDCs for x = 0.2, 0.5, 2, taken at the β band crossing point along Γ-M (hν = 32 eV,

T = 40 K).
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4.2 Experimental method

To check if the OSMT occurs at a lower Sr concentration, we have conducted a

series of ARPES experiments [1] on high-quality single crystals at x = 0.2, grown

by the floating zone technique [5]. All of our experiments have been performed at

high-flux synchrotron undulator beam lines (e.g., Wadsworth, U1-NIM, PGM at the

Synchrotron Radiation Center, Wisconsin), using a high-efficiency Scienta SES-2002

electron analyzer. The energy and momentum resolutions are 10 - 30 meV and 0.02

Å−1, respectively. Samples were cleaved in situ and measured at 40 K in a vacuum

better than 1 x 10−10 torr. The samples have been found to be very stable and

without degradation for the typical measurement period of 48 hours. Precise deter-

mination of the low-energy electronic structure at this doping level is important since

Ca1.8Sr0.2RuO4 is at the boundary between a magnetic metal and an antiferromag-

netic insulator, and exhibits non-Fermi liquid behaviors in the resistivity [3]. However,

it is a rather difficult and lengthy experiment due to a much reduced ARPES spectral

intensity in the vicinity of the Fermi energy (EF ) near the insulating phase. Several

techniques have been used to boost photoelectron signals, including enhancement of

the APRES matrix elements through fine tuning of photon energy and measurements

at different Brillouin zones (BZs).
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4.3 Sample quality

The ARPES intensity of Ca1.8Sr0.2RuO4 sample is very weak because it is at the

border of insulating and metallic phase. We have done the following measurement to

make sure that the quality of the sample is good:

I. Valence band measurement: As shown in Fig. 4.1(a) and (b), strong spectral in-

tensity and clear dispersion similar to the case of Sr2RuO4 are observed in the valence

band of Ca1.8Sr0.2RuO4, indicating good quality of sample and surface. However, the

spectral intensity near EF experiences dramatic reductions as the Sr content x ap-

proaches 0.2, as demonstrated in Fig. 4.1c, reflecting the fact that the system is near

an insulating phase.

Figure 4.2: LEED patterns of of Ca2−xSrxRuO4 at different Sr levels (x= 0.1, 0.5, 1.0

and 2) show the rotation of RuO6 octahedra.

II. LEED patterns of sample surface: Ca1.8Sr0.2RuO4 is easy to cleave and usually

has a good (001) surface. It exhibits a clear LEED pattern for cleaved surfaces.

Figure 4.2 shows LEED pictures for different Sr concentrations from the reference [21].
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The brighter LEED spots form a square lattice corresponding to the 2-dimensional

RuO2 lattice. The additional faint sports, which appear in the middle of the four

bright spots, are caused by the rotation of the RuO6 octahedra along the c-axis. This

rotation is known to exist in the bulk of Ca2−xSrxRuO4 when x ≤ 1.5. The typical

LEED pattern of Ca1.8Sr0.2RuO4 measured during our ARPES experiments is almost

identical to the one shown above for Ca1.9Sr0.1RuO4, indicating the good quality of

the sample surface.

III. Laue pictures of samples:

Figure 4.3: Laue pictures of of of Ca2−xSrxRuO4 at x= 2, 0.5, 0.2

Figure 4.3 shows some of the Laue pictures for three doping levels that show

clear atomic patterns indicating good sample quality. The spots on Laue picture for

Ca1.8Sr0.2RuO4 are as sharp as pristine Sr2RuO4, indicating that single crystals are

of high quality at this doping level.

IV. Direct comparison of APRES spectra between Ca1.8Sr0.2RuO4 and Sr2RuO4:
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Figure 4.4 shows ARPES intensity plots and the corresponding second derivative plots

along a cut parallel to Γ-X (a few degrees off Γ-X). The first cut is for Ca1.8Sr0.2RuO4,

which clearly shows the α, β and α bands. However, there is no sign of the γ band.

The second cut is for Sr2RuO4, which was measured in almost identical experimental

conditions, clearly revealing three bands close to the X point. Note that the γ band

is the strongest in Sr2RuO4.

Figure 4.4: Comparison of ARPES intensity plots (a and c) and second derivative

plots (b and d) along a long cut parallel to the Γ-X direction (the black line shown

in panel e) between Ca1.8Sr0.2RuO4 and Sr2RuO4.
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4.4 ARPES results and discussions

To see clearly the low-energy excitations, we zoom in to the binding energy range

within 0.2 eV to EF , as plotted in Fig. 4.5. One can identify weak but discernible

peaks dispersing towards to EF , as shown in Figs. 4.5c and d. Unlike Sr2RuO4,

which has Fermi liquid-like quasiparticle (QP) peaks [13], Ca1.8Sr0.2RuO4 has a much

broader lineshape in its low-energy dispersion. As illustrated in Figs. 4.5a and b, we

observe two linearly dispersive bands along the high-symmetry line X-Γ-X, or (π,π)-

(0,0)-(-π,-π), crossing EF around 0.3 and -0.9 Å−1, respectively. These two Fermi

crossing (kF ) points, plotted in Fig. 4.5f as points # 1 and 2, locate respectively on

the calculated α FS for Sr2RuO4 and its folded FS (labeled as the α′ FS) due to the

√
2 ×

√
2 reconstruction caused by a rotation of the RuO6 octahedra [14]. We note

that the peak intensity in both energy distribution curves (EDCs) and momentum

distribution curves (MDCs) diminishes as it approaches EF or kF , possibly due to

a small energy gap or the QP decoherence effect observed in some transition metal

oxides near the metal-insulator boundary [15]. The band dispersion along another

high-symmetry line M-Γ-M is displayed in Fig. 4.5e, and we observed four FS crossings

(points #3 - #6) whose locations are plotted in Fig. 4.5f. While the crossing points

#4 and 5 are on the calculated α′ FS, and #3 and 6 are close to the β FS with respect

to the location and direction of dispersion as compared with x = 0 and 0.5, there is

no observation of the dispersing γ band and the corresponding FS crossing.

To verify these band and FS assignments, we have performed many measurements
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Figure 4.5: Band dispersion along high-symmetry directions in Ca1.8Sr0.2RuO4. (a)

ARPES intensity plot along X-Γ-X. (b) The corresponding second derivative plot of

(a). The white dashed lines are guide for eyes. (c) EDCs, and (d) MDCs, within

the red dashed box in (a), showing low-energy band dispersion, as indicated by blue

dashed lines. (e) Second derivative plot of ARPES intensity along M-Γ-M. (f) Fermi

crossings (black dots) indicated in (b) and (e), and Fermi surface sheets (red lines)

calculated by LDA for Sr2RuO4 [17] in the first BZ.
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to cover a wide range of k-space. We locate and plot all observed FS crossing points

in the first BZ shown in Fig. 4.6a. The extracted kF points from the dispersive bands

indicted by dots are obtained from MDCs and EDCs. It is clear that both the α

and β main FS sheets and the folded α′ FS are present in Ca1.8Sr0.2RuO4. However,

no evidence of the γ FS is found. The disappearance of the γ FS is very puzzling.

According to Luttinger counting theorem, the total occupied FS area should remain

the same due to the isovalence nature of the Ca-Sr substitution. From the fitted α

and β FS sheets, as shown in Fig. 4.6a, we derive the electron occupations nα = 1.72

and nβ = 0.79, implying that the γ band has 1.49 valence electrons since ntotal = 4.

To illustrate this point, we plot the “would be” γ FS in Fig. 4.6a as a simple circle

(black dished line), which satisfies the Luttinger counting of 1.49 electrons. Note that

it would almost touch the M (π, 0) point, indicating that its van Hove singularity is

very close to the Fermi energy, which may lead to instability at low temperature.

To further understand the fate of the γ band, we plot in Fig. 4.6b an EDC of

Ca1.8Sr0.2RuO4 integrated over the neighboring region of M (indicated by a rectan-

gular box around M in Fig. 4.6a). In contrast to the EDC of Sr2RuO4 at M, which is

also plotted in Fig. 4.6b, the EDC of Ca1.8Sr0.2RuO4 shows a dramatic suppression

of the γ QPs. In fact, the spectrum consists of a broad feature with a gap of & 100

meV, and a small “foot” extending toward EF . The origin of this small “foot” is not

entirely clear, although it may possibly come from a residual γ band from a minority

phase, or certain impurity states. We regard the disappearance of the γ QP with a
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Figure 4.6: Fermi surface and electron occupancy of different orbitals. (a) Measured

FS sheets of α (green contours centered at X), β (red contour centered at Γ), and the

folded α (blue dashed contour centered at Γ), along with the Fermi crossing points

determined by ARPES (black solid dots) and symmetrized points according to the

4-fold crystal symmetry (red open dots). The black dotted contour centered at Γ is

the derived γ FS according to Luttinger theorem. (b) Comparison of the (π, 0) EDCs

between Ca1.8Sr0.2RuO4 and Sr2RuO4, integrated over the k-region indicated by the

shaded rectangle in (a). (c) The Sr content dependence of electron occupancy of γ

and (α+β)/2, obtained by ARPES (red dots and lines), and LDA (black dots and

lines).
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large soft gap as an evidence for possible localization of the γ band. We notice that

the electron occupancy of the γ band is close to 1.5 (a half integer) from both the

experimental derivation based on Luttinger theorem as discussed above, and our the-

oretical calculation using local density approximation (LDA), as shown in Fig. 4.6c.

It is remarkable that the LDA calculation shows good agreement with the ARPES

experimental observation. The basic reason for the increase of the γ electron occu-

pation is that the increased hybridization between the t2g and eg orbitals, due to the

increasing rotation and tilting of the octahedra at higher Ca content, pushes down

the dxy band [30]. The same effect has been also observed in a similar 4d-electron

system (Sr2RhO4) [16].

A natural question is why the FS and the coherent excitations from the γ band are

absent at 1.5 electron occupancy. Remarkably, as the system undergoes the
√

2×
√

2

reconstruction in the bulk [14], the γ band folds into two subbands by the superlattice

potential, accompanied by the doubling of the unit cell. The folded γ bands in the

reduced BZ host a total of 3 electrons. The lower subband is completely filled while the

upper one is precisely at half-filling. It is thus possible for the γ-complex to undergo

the Mott transition and become localized in the doubled unit cell, contributing a

spin-1/2 local moment. Since there are two Ru atoms per supercell, the localized

magnetic moment is 0.5 µB per Ru atom. This is indeed consistent with the field

dependent magnetization measurement in Ca1.8Sr0.2RuO4 [4]. The sharp increase of

the magnetization to 0.5 µB as the applied magnetic field reaches about 5 T (shown
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as in Fig. 3.8) can be attributed naturally to the polarization of the local moment,

whereas the subsequent gradual growth of the magnetization with further increasing

field arises from Pauli paramagnetism of the itinerant α and β band electrons.

4.5 Theoretical explanation

Theoretically, most of the model studies have focused on the two-band Hubbard

model, where the OSMT is mainly controlled by the difference in the bandwidths [7,9].

The real situation in Ca2−xSrxRuO4 system is more complex. Due to the
√

2 ×
√

2

super structure, there is a total of six bands occupied by eight electrons in the doubled

unit cell. We have carried out first-principle calculations and found that the lower

three bonding bands are fully occupied by six electrons. The remaining two electrons

occupy the upper three anti-bonding bands. If there were no crystal field splitting,

these two electrons would be almost evenly distributed among the upper three bands,

corresponding to occupations (2/3, 2/3, 2/3). However, the localized orbital must be

filled by an odd integer number of electrons in an OSMT, which can be realized in

Ca2−xSrxRuO4 only when the two electrons redistribute among the upper three bands

to reach occupations (1/2, 1/2, 1) due to the crystal field splitting. This is consistent

with our ARPES measurements near x = 0.2. Indeed, our LDA calculation shows

that, with the reduction of the Sr concentration x, the crystal field pulls down the γ

band and transfers charge from the α, β bands to the γ band as shown in Fig. 4.6c.

When the electron distribution reaches (1/2, 1/2, 1), the three-band complex splits
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Figure 4.7: Calculations that show OSMT in multi-orbital systems (a) The QP

weight for the 3-band Hubbard model with equal bandwidth W as a function of charge

transfer δ defined by (nα, nβ, nγ) = (2
3
- δ
2
, 2

3
- δ
2
, 2

3
+δ). U/W = 4.0, J/W=1.0. (b) The

intraband and interband correlation functions, where χα↑,α↓ = 〈nα↑nα↓〉− 〈nα↑〉〈nα↓〉,

χγ↑,γ↓ = 〈nγ↑nγ↓〉−〈nγ↑〉〈nγ↓〉 and χα,γ = 〈(nα↑+nα↓)(nγ↑+nγ↓)〉−〈(nα↑+nα↓)〉〈(nγ↑+

nγ↓)〉. (c) Same as in (a), except for the three bandwidths of W, W, 1.5W . (d) Same

as in (b), except for the three bandwidths of W, W, 1.5W . Note that the y-axis is

negative in (b) and (d). With increasing δ, the intra γ-band correlation becomes

large and negative, while the interband correlation approaches zero.
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into two groups: two nearly degenerate α and β bands, and a separated γ band with

a lowered center of gravity. Therefore, we have one two-band system and one single-

band system, both with one electron per unit cell. The reason for the OSMT to

take place in the γ band is that the critical interaction Uc for the Mott transition in a

single band Hubbard model is about 30% smaller than that of a two-band model with

one electron per unit cell and identical bandwidth, a result obtained by variational

Gutzwiller and dynamical mean field theory [18,19]. The Hund’s rule coupling further

increases the critical Uc for the two-band system. Therefore, in a large area of the

parameter space, the single γ-band system lies in the Mott phase contributing to the

local moment, while the two-band system remains in the metallic phase contributing

to the itinerant electrons.

To further illustrate this point, we apply the slave boson mean field theory to a

simple three-band Hubbard model with the bandwidth ratios of 1:1:1 and 1:1:1.5 and

two electrons per unit cell. The technical details have been explained in reference [20].

In Fig. 4.7, we plot the QP coherence weight (Z) and the orbital correlations as a

function of the charge transfer δ. Fig. 4.7a clearly shows that the coherence weight

of the γ band decreases continuously while that of the degenerate α band remains

almost a constant as the OSMT is approached at charge transfer δ = 1/3, which

corresponds to the charge distribution (1/2, 1/2, 1). Concomitantly, as can be seen

from Fig. 4.7b, the interband correlations (χ) between the γ and the α, β bands

are dramatically reduced. To verify that the bandwidth difference does not play an
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important role in the OSMT, we show in Figs. 4.7c and d that the same conclusion

is reached for the case where the γ band is 1.5 times as wide as that of the α and β

bands.

4.6 Conclusions

In conclusion, we have successfully measured the low energy excitations in multi-

orbital ruthenate Ca2−xSrxRuO4 near x = 0.2 by ARPES and unraveled a novel

mechanism for the OSMT. The band dispersions and the associated FSs are observed

for the dyz and dzx orbitals. In contrast, the dxy orbital shows a loss of coherent

QP excitations due to Mott localization. We discovered that the
√

2×
√

2 structure

reconstruction plays a crucial role in establishing the half-filling condition of the anti-

bonding γ band. We provided microscopic theoretical support for this novel OSMT

and demonstrated the importance of the crystal field splitting induced interorbital

charge transfer and the orbital degeneracy for promoting an intriguing electronic

phase with coexisting local moment and itinerant electrons. Our findings highlight

the emergent and fundamentally important phenomena governed by the Mott physics

in multi-orbital correlated electron systems, and call for more systematic studies of

transition metal based materials.
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Chapter 5

ARPES studies of iron-based

superconductors

5.1 Motivation

Even though the details of the pairing mechanism in the recently discovered iron-based

superconductors is still under intense debate, several theoretical investigations [2–6]

and experimental observations [7–11] strongly suggest the importance of inelastic

inter-band scattering between hole and electron Fermi surface (FS) pockets connected

via the antiferromagnetic (AF) wave vector. Within this framework, the pairing

strength depends on near- or quasi-nesting, here defined as a large enhancement of

the spin susceptibility at a well defined wave vector [6]. The near-nesting conditions

depend on the shape and size of the various FS pockets, which are tuned by the
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position of the chemical potential. The evolution of the chemical potential with carrier

concentration is thus a key issue to understand the evolution of FS near-nesting and

superconductivity in these materials [1].

The 122-structural phase of BaFe2As2 is particularly suitable for a systematic

study of the chemical potential shift since it can be doped either by electrons or holes

following Fe2+→ Co3+ or Ba2+→ K+ partial substitutions, respectively. Interestingly,

the electron- and hole-doped sides of the phase diagram show some noticeable differ-

ences. For example, while the maximum Tc value for the hole-doped side reaches 37

K at ambient pressure, it tops around 25 K for the electron-doped systems. Similarly,

the superconducting dome extends to much higher doping in the hole-doped case,

with an optimal concentration of around 0.2 hole/Fe against 0.08 electron/Fe for the

electron-doped side.

Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool to access

directly the electronic structure with respect to the chemical potential. Our previous

ARPES studies have already revealed strong variations in the pairing strengths associ-

ated with the various FS sheets in the electron-doped compounds [10] as compared to

the hole-doped ones [7,12], as well as the deterioration of the near-nesting conditions

in highly overdoped samples for which Tc vanishes or is significantly suppressed [9,13].

Although near-nesting was naturally proposed to explain these anomalies, this con-

cept has not been linked to the origin of the electron-hole asymmetry (EHA) and

up to date there is still no systematic investigation of the impact of the chemical
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potential shift on the band structure throughout the whole phase diagram.

Here we present a systematic ARPES study of the chemical potential as a function

of carrier doping in the 122-pnictides. With doping, the chemical potential moves

smoothly with respect to the low-energy valence states, in agreement with our local

density approximation (LDA) calculations. However, we observed anomalously larger

(smaller) core level shift than the valence band shift on the hole (electron)-doped side

for the relatively undisturbed As 3d core levels, possibly due to the screening effect

which increases (decreases) the core level shifts upon hole (electron) doping. Based on

a rigid band shift approximation justified by our experimental results, we computed

the doping dependence of the Lindhard spin susceptibility at the AF wave vector,

and found that the Lindhard function itself is asymmetric as a function of doping, in

a similar fashion as the asymmetry between the hole and electron superconducting

domes. This strongly supports FS-near-nesting-enhanced superconductivity in the

pnictides.

5.2 Nesting scenario

Nesting can be explained in a simple way in iron-based superconductors. Some exper-

imental results and theoretical calculations show that an iron-based superconductor

actually has several ringlike Fermi surfaces. Crucially, one specific ring can be shifted

as a whole to overlap another by a translation vector, an arrangement called “nest-

ing” as shown in Fig. 5.1. In fact, the ring must be shifted by a wavelength and in a
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direction that exactly matches the spacing and orientation of the antiferromagnetic

striping in the parent compound [14].

The nesting scenario is important in iron based superconductors. It is important

to know how nesting conditions change with doping. In the following, a few examples

are given in the case of hole and electron doping of Ba122 systems.

Figure 5.1: Lay it on me: The Fermi surfaces of Ba0.6K0.40Fe2As2 (left) map the

momenta of its electrons. Superconductivity may arise because one surface can be

shifted to cover another [14].

Optimal doping: hole- and electron-doped For the optimal hole doping system

(Ba0.60K0.40Fe2As2), the ARPES results show two hole like Fermi surfaces (FS) at the

zone centre (Γ) and two electron like FS at the zone corner (M point) of the Brilliouin
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Zone (BZ), as shown in Fig. 5.2(a). The SC gap values for hole and electron like FSs

are plotted in Fig. 5.2 (b) and (c) respectively, which clearly indicate a nearly isotropic

values. Also, the gap size and the pairing strength are estimated for the α (∆α ∼

12 meV ; 2∆α/kBTc = 7.7), β (∆β ∼ 6 meV ; 2∆β/kBTc = 3.6), γ (∆γ ∼ 12 meV;

2∆γ/kBTc = 7.7) and δ bands (∆δ ∼ 11 meV; 2∆δ/kBTc = 7.2 ). The weak coupling

BCS pairing strength is around 3.52 (5.6 meV; 2∆/kBTc = 3.52 ). Compared with

the BCS value, there is a strong pairing amplitude in the inner hole band and electron

bands. The size of the inner hole-like Femi surface (α) is approximately the same as

that of the electron-like FSs (γ, δ). There is a nesting between inner hole like Fermi

surface and electron like Fermi surfaces. There is a strong pairing in the nested Fermi

surfaces which is approximately twice as large as the BCS limit [7, 12].

For an optimally electron-doped system (BaCo0.15Fe1.85As2), Figures 5.2(d) and

(e) show the FS plot and the SC gap. Due to electron doping, the chemical potential

moves up so that one of the hole band lies below EF . Thus, only one small hole like

FS and two bigger electron like FSs are observed. The size of the observed β FS is

somehow similar with observed electron FSs. These FSs are nested with each other

through the Q = (π, π) wavevector. It is important to note that the pairing strength

of the β (2∆/kBTc ≈ 6) is enhanced. The FS nesting condition switches from the

α to the β band FS as we go from optimally hole- to electron-doped systems [10].

These results are summarized in Fig. 5.3.
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Figure 5.2: (a) Measured Fermi surface (FS) (circle) and tight-binding fitting curves

(solid lines). The dashed line is the α FS shifted by the (π, π) wavevector. (b), (c)

Superconducting (SC) gap size at 15 K for the (b) α, β and (d) γ and δ FSs as a

function of polar angle (θ) [12, 20] for Ba0.60K0.40Fe2As2 (d) Extracted FS from the

ARPES measurements for BaCo0.15Fe1.85As2 (e) SC gap values at 8 K as a function

of polar angle (θ) for the β and γ, δ (red and blue dots, respectively) [10].
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Figure 5.3: (a) Comparison of the energy bands between the optimally hole (K) and

electron (Co) doped samples. In the optimally hole doped case, the nesting occurs

in between the inner hole and outer electron Fermi surfaces while it is between the

outer hole and electron FS in optimally Co-doped samples.
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Figure 5.4: (a) Comparison of experimentally determined kF points between over-

doped KFe2As2 (Tc = 3 K) and optimally doped Ba0.6K0.4Fe2As2 (Tc = 37 K) (blue

and red circle respectively.) (b) Schematic view of the interband scattering by the AF

wave vector QAF between the hole and electron bands (the α and γ bands) centered

at the Γ and M points, respectively [13].
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Overdoping: hole- and electron-doped Figure 5.4(a) shows the FS plots for

KFe2As2 compared with Ba0.6K0.4Fe2As2. Excess of hole doping means that the

chemical potential moved down as compared with optimal hole doping. The elec-

tron bands are above the Fermi level and we do not see any electron-like FSs at the

M point. The two big hole-like FSs are observed at the zone center. Thus, there

is a significant modification of Fermi surface topology, especially at the M point as

compared with optimal doping. In the case of KFe2As2 (Tc ∼ 3 K), the near nesting

conditions are destroyed. No nesting means no or low Tc [13].

For an over-doped electron system (BaCo0.30Fe1.70As2), figure 5.5(a) presents a

comparison of the FS plot with optimally electron-doped system (BaCo0.15Fe1.85As2).

Over doping electrons means that the chemical potential moves up as compared with

optimal doping electrons. This means that the hole bands are below the Fermi level

(EF ). Therefore, no hole-like Fermi surfaces are observed in case of (Co0.30). But

two big electrons like FSs are observed. Thus there is also a significant modification

of the Fermi surface topology which destroys the nesting condition. As shown in the

schematic diagram in Fig. 5.5(b), the β FS and γ FS of the SC Co0.15 sample are well

inter-connected by the AF wave vector QAF = (π, π). There is no α band at EF , and

the size of the β FS and γ FS are somehow similar, allowing nesting or quasi-nesting

between the relatively similar size FSs. In the case of Co0.30 , no nesting or quasi

nesting condition is applicable because of the significant modification of FSs at the Γ

point [9].
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Figure 5.5: (a) Comparison of experimentally determined kF points between SC Co0.15

and non-SC Co0.30 samples. The inset shows the experimental band dispersion in the

vicinity of EF around the Γ point. (b) Comparison of energy bands between the

Co0.15 and Co0.30 samples. The interband scattering is dramatically suppressed in the

non-SC Co0.30 sample since the holelike α and β bands at Γ point are basically below

the Fermi level [9].
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From the above discussion, the following points can be drawn as conclusions:

1. In multiband Fe-based superconductors, the superconducting gap varies from

one Fermi surface pocket to another.

2. The SC gap on each Fermi surface is isotropic.

3. There is sufficient evidence suggesting the importance of inter-band scttering.

4. Superconductivity in these materials is most likely related to AF fluctuations.

5.3 Chemical potential shift with doping and electron-

hole asymmetry

Experimental method The high-quality single crystals of the 122 series used in

this study were grown by the flux method [15]. Low-energy electron diffraction on

mirror-like cleaved surfaces show a sharp 1 x 1 pattern in the non-magnetic phase.

High-resolution (4-20 meV) ARPES measurements of the low-energy electronic struc-

ture were performed in the photoemission laboratory of Tohoku University using a

microwave-driven Helium source (hv = 21.218 eV) and core level studies were done

at the Synchrotron Radiation Center and the Advanced Light Source in USA, as well

as at the Photon Factory in Japan, using various photon energies. Our experiments

have been performed using high-efficiency VG-Scienta SES-100, SES-2002 and R4000

electron analyzers. Samples were cleaved in situ and measured at 7-40 K in a vac-
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uum better than 1 x 10−10 torr. The samples have been found to be very stable and

without degradation for the typical measurement period of 20 hours.

Core level and chemical potential shift with doping Photoemission allows

measurement of the core level states relative to the chemical potential. It has been

used widely in the past to study the chemical potential shift in high-Tc cuprates

[16–18]. Fig. 5.6(a) shows a comparison of the core levels in the 0-110 eV binding en-

ergy range of 7 samples distributed in the electron-doped and hole-doped sides of the

phase diagram. These samples are BaFe1.70Co0.30As2 (Tc = 0 K), BaFe1.84Co0.16As2

(Tc = 20 K), BaFe1.92Co0.08As2 (Tc = 0 K), Ba2Fe2As2 (Tc = 0 K), Ba0.75K0.25Fe2As2

(Tc = 26 K), Ba0.60K0.40Fe2As2 (Tc = 37 K), and Ba0.30K0.70Fe2As2 (Tc = 22 K). For

simplicity, here after we call them Co0.30, Co0.16, Co0.08, Ba122, K0.25, K0.40 and K0.70,

respectively. From low to high binding energies, we observed the Fe 3d (around the

Fermi level), Ba 5p (∼14.5 eV), K 3p (∼18 eV), As 3d (∼ 40.4 and 41.3 eV) and Ba

4d (∼ 89.5 and 92 eV) states, respectively. In particular, the As 3d peaks are very

strong in all compounds regardless of Co and K doping. Based on a previous photoe-

mission study [19] that indicates that the As atoms in BaFe2As2 are not perturbed

significantly at the cleaved surface, we used the As 3d core levels to investigate the

doping dependence of the chemical potential. In Fig. 5.6(b), we show a zoom of the

As 3d core levels of all compounds. The position of the peaks moves towards the

lower binding energies as K concentration increases. In contrast, the peak positions

are almost unaffected by Co-doping. We plot in Fig. 5.6(c) the shift of the As 3d3/2
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Figure 5.6: (a) Core levels of the Ba122 series recorded with a photon energy of 140

eV. The inset shows a zoom of the core levels of the K0.70 sample in the 12-21 eV

binding energy range. (b) Zoom of the As 3d core levels. (c) Doping dependence of

the As 3d3/2 and As 3d5/2 core level energies as a function of carrier density (half of

the x value). The average is represented by the blue dotted line.
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and As 3d5/2 levels as a function of carrier density, which is half of the value x for

both K and Co dopings. The blue dashed line in Fig. 5.6(c) gives the average of the

As 3d peaks as a function of doping.

An alternative and more direct determination of the chemical potential shift is

obtained by looking at the band dispersion near the Fermi level (EF ). In Figs. 5.7(a)

and (b), we present ARPES intensity plots of the Co0.16 and K0.40 samples along a cut

passing through M as indicated in Fig. 5.7(e). The corresponding second derivative

intensity plots are displayed in Figs. 5.7(c)-(d). The blue dashed lines are guides

to the eye indicating the bottom of the upper electron band (the γ band as defined

in Ref. [20]). The bottom of this electron band at the M point moves down from

EF as the signed concentration decreases (more electrons), which is what we expect

from simple band filling. In particular, this behavior supports the assumption that

the Fe → Co substitution electron-dope the Fe layer, in contrast to a recent density

functional theory calculation suggesting that Co and Ni only act as scattering centers

in the Fe planes [21]. It is also consistent with the observation of a downshift of the

Γ-centered holelike bands in the Co-doped side [9]. Fig. 5.7(f) summarizes our results

of the seven differently doped samples and gives the position of the bottom of the

electron band as a function of the carrier density.

At this point, it is instructive to compare LDA calculations to the core level shifts

and the shift of the bottom of the electron band, which corresponds to the chemical

potential shift in a rigid band picture. The results are summarized in Fig. 5.8. It is
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Figure 5.7: (a) and (b) ARPES intensity plots of the Co0.16 and K0.40 samples, respec-

tively, along the cut passing through M indicated by a dashed line in panel (e). (c)

and (d) Corresponding second derivative intensity plots. (f) Bottom of the electron

bands versus carrier density.
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Figure 5.8: Valence band and core level shifts as a function of the carrier density. (a)

The black line with open circles shows the core level shifts while the blue line with

closed circles gives the valence band shifts measured from the band bottom. The

red line with open squares gives the difference between the core level and chemical

potential shifts. (b) The blue dots are the valence band shifts shown in panel a, and

the red dash line is the LDA calculated values of the chemical potential divided by a

factor of 4. (c) Pictorial representation of the explanation of the core level and the

chemical potential shifts as a function of carrier density.
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clear from Fig. 5.8(a) that the core level shift is not the same as the shift of the valence

band, and the difference between them are larger on the hole-doped side, which will

be discussed below. Interestingly, the theoretically calculated chemical potential shift

is very much consistent with the observed valence band shift when theoretical values

are divided by 4 as shown in Fig. 5.8(b), which is understood in terms of the band

renormalization reported in previous ARPES studies [9, 10, 13, 20]. This indicates

that the shift of the valence band corresponds to the chemical potential shift, and

consequently, the rigid band picture derived from the renormalized band structure is

valid.

The core level shift can be understood as follows. The core level shift ∆E is

related to the chemical potential shift ∆µ by the relation:

∆E = −∆µ + K∆Q + ∆VM + ∆ER (5.1)

where ∆Q is the change in valency, K is a constant, ∆VM is a shift due to change

in the Madelung potential, and ∆ER is the change in the core-carrier screening [22].

Doping is not expected to change the As valency. This implies that the term K∆Q

can be neglected. Therefore, the difference between the core level and the chemical

potential shift represented in Fig. 5.8(a) by the red line is only related to ∆VM and

∆ER. It is known that the screening term ∆ER is proportional to the mobile carrier

concentration, thus one expects that it has the same sign on the electron- and hole-

doped sides and increases with doping. Such doping dependence of the screening

term, as indicated in Fig. 5.8(c), will increase (reduce) the core level shift caused by
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the chemical potential shift on the hole (electron)-doped side. This is consistent with

our observation of different behaviors of the core level shift on hole- and electron-

doped sides. We note that the change of the Madelung term ∆VM may not be same

on hole- and electron-doped sides, which can further enhance the difference of the

core level shift on the two sides.

Electron-hole asymmetry The above analysis suggests that a rigid band picture

constitutes a good first approximation of the evolution of the chemical potential in

the 122 family of iron-pnictides. We now ask a simple but fundamental question: is

FS near-nesting able to explain the electron-hole asymmetry of the superconducting

domes shown in the phase diagram of the 122-pnictides of Fig. 5.9(a)? To answer this

question, it is necessary to compute the spin susceptibility. It is especially impor-

tant to understand how the susceptibility evolves at the near-nesting (or AF) wave

vector. We use the band structure calculated by LDA to compute the doping de-

pendence of the Lindhard spin susceptibility at the near-nesting wave vector [25,26].

We limit our calculations to the elastic component of the spin susceptibility. The

results are displayed in Fig. 5.9(b). Interestingly, the hole- and electron-doped sides

exhibit a strong asymmetry: while the Lindhard function decreases monotonically

on the electron-doped side (with a small shoulder around ∼0.12), it keeps a high

value for a wide hole doping range before starting to decrease. Remarkably, the max-

imum value of the calculated susceptibility is obtained near the experimental optimal

hole doping, and the Lindhard function using the FS nesting wave vector tracks the
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Figure 5.9: (a) Phase diagram of the hole- and electron-doped Ba-122 systems taken

from references [23] and [24], respectively. Tc, TSDW and Tstr refer to the supercon-

ducting, the SDW and the tetragonal to orthorombic structural transitions, respec-

tively. (b) Doping dependence of the Lindhard function at the M point (near-nesting

wave vector) normalized by its value at the zone center. The Lindhard function was

obtained by using LDA calculation.
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superconducting transition qualitatively well. It is important to note that such an

asymmetry in the Lindhard susceptibility would lead to a higher dielectric function

and consequently to a larger screening effect on the hole-doped side. This is qualita-

tively consistent with the observed larger difference between the core level shift and

the chemical potential shift on the hole-doped side shown in Fig. 5.8(a). We caution

that the non-magnetic LDA calculations are no longer valid in the spin density wave

(SDW) state because the band structure undergoes unconventional band folding that

leads to the formation of Dirac cones [27].

The basic reason for electron-hole asymmetry in the calculated Lindhard function

is as follows. The effective masses of the holelike bands, especially the β band, are

larger than that of the electronlike bands at the M point, as observed by ARPES [20]

and quantum oscillation experiments [28]. To satisfy the Luttinger theorem, their top

of band at zero doping must thus be closer to EF than the bottom of the electron

bands. Indeed, even for optimally hole-doped samples, the top of the α band is located

only 25 meV above EF [11]. As a consequence, the holelike bands sink below EF with

electron doping much faster than the bottom of the electron bands are pushed above

EF with hole doping. Therefore, the FS near-nesting conditions are more robust in

the hole-doped case. The built-in asymmetry regarding the FS near-nesting condition

on the electron- and hole-doped sides offer a simple but powerful clue that the FS

near-nesting with the AF wave vector triggers superconductivity in the pnictides.
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Conclusion In conclusion, we have presented the doping dependence of the chem-

ical potential in the 122 family of iron-pnictides. As a first approximation, our re-

sults are consistent with a rigid band shift and with renormalized LDA calculations.

The doping dependence of the As 3d core levels does not follow that of the chem-

ical potential, suggesting a non-negligible screening effect. Within the rigid band

shift approximation, the calculated Lindhard function at the FS-nesting wave vector

based on the LDA band structure reveals an electron-hole asymmetry in the iron

pnictides, which matches well with the observed electron-hole asymmetry of the su-

perconducting domes in the phase diagram. Our findings reveal the importance of

FS near-nesting in the pairing mechanism of the iron-based superconductors.

5.4 Other projects on 122 and 11 systems

Fermi surface and kz dispersion in 122 system

Fermi surface of 122 system: Fermi surface measurement of Co = 0.16, 0.08,

Ba122 and K = 0.10 for the Ba122 systems have been performed, as is shown in

Fig. 5.10. In all cases, hole like Fermi surfaces at the zone center and electron-like

Fermi surfaces at the zone corners have been observed. Similarly, a cut at Γ and

along the Γ-M direction for all four dopings and their energy second derivatives plots

are shown in Fig. 5.11. Holelike and electronlike bands are clearly observed.
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Figure 5.10: Fermi surface measurement of Co = 0.16, 0.08, Ba122 and K = 0.10

for the Ba122 systems. In all cases, hole and electron FSs are clearly seen.
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Figure 5.11: A cut and its 2nd derivative at the Γ point along Γ-M for Co = 0.16,

0.08, 0 and K = 0.10 for the Ba 122 systems.

128



kz dispersion: Some theoretical and ARPES studies suggest that unlike the copper

oxide superconductors, the iron-based superconductors have a 3D Fermi surface. Ac-

tually, despite the fact that ARPES is a 2D measurement due to non-conservation of

the perpendicular component of momentum at the surface, one can still access the 3D

electronic structure by varying the probing photon energy (hv). Thus tuning the inci-

dent photon energy, the allowed direct transition will shift in energy and consequently

in the momentum kz perpendicular to the a-b plane, which helps to determine the

electronic dispersion along the c-axis. In the free electron final state approximation,

the conversion is given by

kz =
1

~
√

2m[(hv − φ− EB)cos2θ + V0] (5.2)

where V0 is an experimentally determined inner potential [22].

Fig. 5.12 shows the kz dispersion for 4 different kinds of samples. For Co doped

and parent compound samples, the kz dispersion is strong for hole like bands. But

there is a weaker kz dispersion for the K = 0.10 sample. Also, it is interesting to

note that the kz dispersion is weaker at the M point in Ba122 and Ba1.90K0.10Fe2As2

samples.

The Co-doped side shows stronger kz dispersion as compared to the K-doped side

in the under-doping cases. The reasons may be the followings:

1. If you are in the hole-doped side, VF becomes larger, so one would not expect

big change in VF . This means that the Fermi surface will vary slower along the

z direction. This behavior is opposite in the Co-doped side.
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Figure 5.12: kz dispersion for Co = 0.16, 0.08, Ba122 and K = 0.10 for the Ba

122 systems. The parent compound and the electron- doped side show stronger kz

dispersion as compared to the hole doped side.
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2. AF is stronger on the electron-doped side which means that kz will vary more

and for a wider range of doping. The kz variation is much stronger in the AF

phase.

Figure 5.13: EDCs curves for different photon energies for the Ba122 systems: Ba122

and K = 0.10.

In Fig. 5.13, the valence band energy distribution curves (EDCs) for different

photon energies are plotted. It is interesting to note that there are two peaks initially

at low photon energy. But as we go to higher photon energy (∼ 60 eV) these 2 peaks
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are merged into a single one. As we increase photon energies further, the two peaks

re-appear. This can be explained in term of kz dispersion.

There is a strong kz dispersion at the Z point. Thus, the single peak of EDC

curves has been observed around the Z point. At this point, all hole bands ( probably

all 3 bands) cross EF or are very near to EF . Other than Z point or close to Z point,

some hole-like bands are below EF which indicates weaker kz dispersion.

Core levels and FS study of the 11 system

The very recent observation of unusual superconductivity and magnetic order in

structurally simpler compounds, such as FeSex and Fe1+yTe1+xSex is a high priority for

current research in iron-based superconductors. Due to significantly simpler crystal

structures, there is a high expectation for these compounds to give the key ingredients

for superconductivity and the nature of the magnetically order state of their parent

compounds. Superconductivity with Tc up to 15 K is achieved in the Fe1+x(Se, Te)

series and Tc increases up to 27 K under modest applied pressure. The Tc value of

FeSex is about 8 K. The electronic structure is very similar to the iron pnictides and

magnetic order in FeTe originates from very strong Fermi surface nesting leading to

the largest spin density wave gap in these series [29–33].

Core level study of FeTe1−xSex: Core level studies have been done for x = 0.20,

0.30 and 0.40 of the FeTe1−xSex system. In all cases, the Se 3d level (∼ 55.5 eV,

54.6 eV), Te 4d level (∼ 41.9 eV, 40.4 eV), Fe 3p level (∼ 52.7 eV) and Fe 3d level

near EF have been clearly seen. Fig. 5.14(a) shows the photon energy dependence
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(a)  (b)  (c) 

(d) 

(e) 

Figure 5.14: (a) Core level for FeTe0.60Se0.40 for different photon energies. (b)

Experimentally determined peak weights for Se 3d and Te 4d as a function of photon

energy. The crossing point is around 130 eV shown by black dash line. (c) Calculated

cross-section for Se 3d and Te 4d, and experimentally determined peak weight as a

function of photon energy. (d) Comparison of Se 3d core levels for x = 0.40, 0.30 and

0.20 (d) same as (c) for the Te 4d levels.

133



of the core levels for x = 0.40 system. It is clearly seen that the peak weight of Te

4d start to decrease when photon energy increases from 110 eV to 160 eV. However,

the opposite effect has been observed for the Se 3d core levels. The peak weight for

Se 3d and Te 4d versus photon energy are plotted in Fig. 5.14(b). Around 130 eV,

the intersection of these curves has been observed. In Fig. 5.14(c), the calculated

cross-section and the experimentally determined peak weight for Se 3d and Te 4d

are plotted as a function of photon energy. The intersection points for theoretically

calculated cross-section (∼ 100 eV) and experimentally determined peak weight (∼

130 eV) are different. The different crossing points between the measurements and

calculations can be due to several factors:

1. There are different percentages of Te and Se.

2. The chemical environments are different.

3. In principle, there should be both surface and bulk contributions to Se and Te

core levels. However, there seems to be only one set of core levels. Either the

surface and bulk are same, or we do not see the bulk.

The substitution of Te by Se gives no change of valency because they are iso-

valent. Thus the peak positions of Se 3d and Te 4d are not expected to change for

different values of x. For x = 0.20, 0.30 and 0.40, there is no significant change of the

peak position, as shown in Fig. 5.14(d) and (e) for Se 3d and Te 4d, respectively.
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Core level study of FeSex: FeSex is stable in the PbO type structure (α-phase)

with x up to 8/7 and magnetization measurements indicate that both Fe deficient

and Se deficient material are ferromagnetic near room temperature. α-FeSex has a

planar crystal sublattice consisting of edge sharing FeSe4 tetrahedra, the same as the

FeAs4 tetrahedra layers found in oxypnictides [29]. The discovery of superconductivity

in FeSe4 is valuable in understanding the superconducting mechanism of Fe-based

superconductors. Furthermore, FeSex is much easier to handle and fabricate since it

is a binary system and selenium is much less toxic than arsenic. Investigation of the

superconductivity in FeSex can shed light on the role of FeAs layers and magnetic

interaction related with the occurrence of superconductivity in the recently discovered

superconducting ferrous-oxypnictides.

Figure 5.15 (a) shows the core level comparison of the FeSex system with x =

0.92, 0.99 and 1.04. For all three dopings, the strong Se 3d level has been observed.

Similarly, Fe 3p and Fe 3d level near EF are visible. Se deficiency provides carriers

in this system. The zoom of Se 3d levels is shown in Fig. 5.15(b). A small peak

shift can be seen, which is negligible because the change of carrier (the deficiency of

the Se concentration) is less than 10 %, and it is coupled with the resolution of the

measurement.

Fermi surface study of FeSex: A plot of Fermi surface is shown in Fig. 5.15 (c)

for FeSe0.99. The hole like Fermi surface at the Γ point (zone centre) and the electron

like Fermi surface at the M point (zone corner) are observed. In Fig. 5.10(d), a cut
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Figure 5.15: (a) Core levels of the FeSex system with x = 0.92, 0.99 and 1.04. (b)

zoom of the Se 3d levels from (a). (c) Fermi surface plot for FeSe0.99. (d) ARPES

intensity plot of a cut at Γ and along the Γ-M direction, and (e) its 2nd derivative

intensity plot for FeSe0.99.
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at the Γ point along the Γ -M direction is plotted. The intensity near the Fermi level

(EF ) is weak. The 2nd derivative intensity plot is shown in Fig. 5.15(d), where a hole

band is seen clearly.
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